# ezmesh

3-D mesh plotter

## Syntax

`ezmesh(f)ezmesh(f, domain)ezmesh(x,y,z)ezmesh(x,y,z,[smin,smax,tmin,tmax])ezmesh(x,y,z,[min,max])ezmesh(...,n)ezmesh(...,'circ')`

## Description

`ezmesh(f)` creates a graph of f(x,y), where `f` is a symbolic expression that represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB® software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.

`ezmesh(f, domain)` plots f over the specified `domain`. `domain` can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ```ezmesh(u^2 - v^3,[0,1],[3,6])``` plots u2 - v3 over 0 < u < 1, 3 < v < 6.

`ezmesh(x,y,z)` plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

`ezmesh(x,y,z,[smin,smax,tmin,tmax])` or `ezmesh(x,y,z,[min,max])` plots the parametric surface using the specified domain.

`ezmesh(...,n)` plots f over the default domain using an `n`-by-`n` grid. The default value for `n` is 60.

`ezmesh(...,'circ')` plots f over a disk centered on the domain.

## Examples

This example visualizes the function,

$f\left(x,y\right)=x{e}^{-{x}^{2}-{y}^{2}},$

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform blue color by setting the colormap to a single color.

```syms x y ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40) colormap([0 0 1]) ```