Documentation

This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

ifourier

Inverse Fourier transform

Syntax

``ifourier(F)``
``ifourier(F,transVar)``
``ifourier(F,var,transVar)``

Description

example

````ifourier(F)` returns the Inverse Fourier Transform of `F`. By default, the independent variable is `w` and the transformation variable is `x`. If `F` does not contain `w`, `ifourier` uses the function `symvar`.```

example

````ifourier(F,transVar)` uses the transformation variable `transVar` instead of `x`.```

example

````ifourier(F,var,transVar)` uses the independent variable `var` and the transformation variable `transVar` instead of `w` and `x`, respectively.```

Examples

collapse all

Compute the inverse Fourier transform of `exp(-w^2/4)`. By default, the inverse transform is in terms of `x`.

```syms w F = exp(-w^2/4); ifourier(F)```
```ans = exp(-x^2)/pi^(1/2)```

Compute the inverse Fourier transform of `exp(-w^2-a^2)`. By default, the independent and transformation variables are `w` and `x`, respectively.

```syms a w t F = exp(-w^2-a^2); ifourier(F)```
```ans = exp(- a^2 - x^2/4)/(2*pi^(1/2))```

Specify the transformation variable as `t`. If you specify only one variable, that variable is the transformation variable. The independent variable is still `w`.

`ifourier(F,t)`
```ans = exp(- a^2 - t^2/4)/(2*pi^(1/2))```

Compute the inverse Fourier transform of expressions in terms of Dirac and Heaviside functions.

```syms t w ifourier(dirac(w), w, t)```
```ans = 1/(2*pi)```
```f = 2*exp(-abs(w))-1; ifourier(f,w,t)```
```ans = -(2*pi*dirac(t) - 4/(t^2 + 1))/(2*pi)```
```f = exp(-w)*heaviside(w); ifourier(f,w,t)```
```ans = -1/(2*pi*(- 1 + t*1i))```

Specify parameters of the inverse Fourier transform.

Compute the inverse Fourier transform of this expression using the default values of the Fourier parameters `c = 1`, ```s = -1```. For details, see Inverse Fourier Transform.

```syms t w f = -(sqrt(sym(pi))*w*exp(-w^2/4)*i)/2; ifourier(f,w,t)```
```ans = t*exp(-t^2)```

Change the Fourier parameters to `c = 1`, ```s = 1``` by using `sympref`, and compute the transform again. The sign of the result changes.

```sympref('FourierParameters',[1 1]); ifourier(f,w,t)```
```ans = -t*exp(-t^2)```

Change the Fourier parameters to `c = 1/(2*pi)`, `s = 1`. The result changes.

```sympref('FourierParameters', [1/(2*sym(pi)) 1]); ifourier(f,w,t)```
```ans = -2*t*pi*exp(-t^2)```

Preferences set by `sympref` persist through your current and future MATLAB® sessions. Restore the default values of `c` and `s` by setting `FourierParameters` to `'default'`.

`sympref('FourierParameters','default');`

Find the inverse Fourier transform of the matrix `M`. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, `ifourier` acts on them element-wise.

```syms a b c d w x y z M = [exp(x), 1; sin(y), i*z]; vars = [w, x; y, z]; transVars = [a, b; c, d]; ifourier(M,vars,transVars)```
```ans = [ exp(x)*dirac(a), dirac(b)] [ (dirac(c - 1)*1i)/2 - (dirac(c + 1)*1i)/2, dirac(1, d)]```

If `ifourier` is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.

`ifourier(x,vars,transVars)`
```ans = [ x*dirac(a), -dirac(1, b)*1i] [ x*dirac(c), x*dirac(d)]```

If `ifourier` cannot transform the input, then it returns an unevaluated call to `fourier`.

```syms F(w) t f = ifourier(F,w,t)```
```f = fourier(F(w), w, -t)/(2*pi)```

Input Arguments

collapse all

Input, specified as a symbolic expression, function, vector, or matrix.

Independent variable, specified as a symbolic variable. This variable is often called the "frequency variable." If you do not specify the variable, then `ifourier` uses `w`. If `F` does not contain `w`, then `ifourier` uses the function `symvar` to determine the independent variable.

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It is often called the "time variable" or "space variable." By default, `ifourier` uses `x`. If `x` is the independent variable of `F`, then `ifourier` uses `t`.

More About

collapse all

Inverse Fourier Transform

The inverse Fourier transform of the expression F = F(w) with respect to the variable w at the point x is

`$f\left(x\right)=\frac{|s|}{2\pi c}\underset{-\infty }{\overset{\infty }{\int }}F\left(w\right){e}^{-iswx}dw.$`

c and s are parameters of the inverse Fourier transform. The `ifourier` function uses c = 1, s = –1.

Tips

• If any argument is an array, then `ifourier` acts element-wise on all elements of the array.

• If the first argument contains a symbolic function, then the second argument must be a scalar.

• The toolbox computes the inverse Fourier transform via the Fourier transform:

`$ifourier\left(F,w,t\right)=\frac{1}{2\pi }fourier\left(F,w,-t\right).$`

If `ifourier` cannot find an explicit representation of the inverse Fourier transform, then it returns results in terms of the Fourier transform.

• To compute the Fourier transform, use `fourier`.

References

[1] Oberhettinger, F. "Tables of Fourier Transforms and Fourier Transforms of Distributions." Springer, 1990.

See Also

Introduced before R2006a

Was this topic helpful?

Mathematical Modeling with Symbolic Math Toolbox

Get examples and videos