# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# igamma

Incomplete gamma function

## Syntax

``igamma(nu,z)``

## Description

example

````igamma(nu,z)` returns the incomplete gamma function.`igamma` uses the definition of the upper incomplete gamma function. The MATLAB® `gammainc` function uses the definition of the lower incomplete gamma function, ```gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu)```. The order of input arguments differs between these functions.```

## Examples

### Compute Incomplete Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, `igamma` returns floating-point or exact symbolic results.

Compute the incomplete gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

`A = [igamma(0, 1), igamma(3, sqrt(2)), igamma(pi, exp(1)), igamma(3, Inf)]`
```A = 0.2194 1.6601 1.1979 0```

Compute the incomplete gamma function for the numbers converted to symbolic objects:

```symA = [igamma(sym(0), 1), igamma(3, sqrt(sym(2))),... igamma(sym(pi), exp(sym(1))), igamma(3, sym(Inf))]```
```symA = [ -ei(-1), exp(-2^(1/2))*(2*2^(1/2) + 4), igamma(pi, exp(1)), 0]```

Use `vpa` to approximate symbolic results with floating-point numbers:

`vpa(symA)`
```ans = [ 0.21938393439552027367716377546012,... 1.6601049038903044104826564373576,... 1.1979302081330828196865548471769,... 0]```

### Compute Lower Incomplete Gamma Function

`igamma` is implemented according to the definition of the upper incomplete gamma function. If you want to compute the lower incomplete gamma function, convert results returned by `igamma` as follows.

Compute the lower incomplete gamma function for these arguments using the MATLAB `gammainc` function:

```A = [-5/3, -1/2, 0, 1/3]; gammainc(A, 1/3)```
```ans = 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i```

Compute the lower incomplete gamma function for the same arguments using `igamma`:

`1 - igamma(1/3, A)/gamma(1/3)`
```ans = 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i```

If one or both arguments are complex numbers, use `igamma` to compute the lower incomplete gamma function. `gammainc` does not accept complex arguments.

`1 - igamma(1/2, i)/gamma(1/2)`
```ans = 0.9693 + 0.4741i```

## Input Arguments

collapse all

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

collapse all

### Upper Incomplete Gamma Function

The following integral defines the upper incomplete gamma function:

`$\Gamma \left(\eta ,z\right)=\underset{z}{\overset{\infty }{\int }}{t}^{\eta -1}{e}^{-t}dt$`

### Lower Incomplete Gamma Function

The following integral defines the lower incomplete gamma function:

`$\gamma \left(\eta ,z\right)=\underset{0}{\overset{z}{\int }}{t}^{\eta -1}{e}^{-t}dt$`

## Tips

• The MATLAB `gammainc` function does not accept complex arguments. For complex arguments, use `igamma`.

• `gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu)` represents the lower incomplete gamma function in terms of the upper incomplete gamma function.

• ```igamma(nu,z) = gamma(nu)(1 - gammainc(z, nu))``` represents the upper incomplete gamma function in terms of the lower incomplete gamma function.

• `gammainc(z, nu, 'upper') = igamma(nu, z)/gamma(nu)`.

#### Mathematical Modeling with Symbolic Math Toolbox

Get examples and videos