Largest elements

returns
the largest elements of matrix `C`

= max(`A`

,[],`dim`

)`A`

along the dimension `dim`

.
Thus, `max(A,[],1)`

returns a row vector containing
the largest elements of each column of `A`

, and `max(A,[],2)`

returns
a column vector containing the largest elements of each row of `A`

.

Here, the required argument `[]`

serves as
a divider. If you omit it, `max(A,dim)`

compares
elements of `A`

with the value `dim`

.

Find the largest of these numbers. Because these numbers are not symbolic objects, you get a floating-point result.

max([-pi, pi/2, 1, 1/3])

ans = 1.5708

Find the largest of the same numbers converted to symbolic objects.

max(sym([-pi, pi/2, 1, 1/3]))

ans = pi/2

Create matrix `A`

containing
symbolic numbers, and call `max`

for this matrix.
By default, `max`

returns the row vector containing
the largest elements of each column.

A = sym([0, 1, 2; 3, 4, 5; 1, 2, 3]) max(A)

A = [ 0, 1, 2] [ 3, 4, 5] [ 1, 2, 3] ans = [ 3, 4, 5]

Create matrix `A`

containing
symbolic numbers, and find the largest elements of each row of the
matrix. In this case, `max`

returns the result
as a column vector.

A = sym([0, 1, 2; 3, 4, 5; 1, 2, 3]) max(A,[],2)

A = [ 0, 1, 2] [ 3, 4, 5] [ 1, 2, 3] ans = 2 5 3

Create matrix `A`

. Find the
largest element in each column and its index.

A = 1./sym(magic(3)) [Cc,Ic] = max(A)

A = [ 1/8, 1, 1/6] [ 1/3, 1/5, 1/7] [ 1/4, 1/9, 1/2] Cc = [ 1/3, 1, 1/2] Ic = 2 1 3

Now, find the largest element in each row and its index.

[Cr,Ir] = max(A,[],2)

Cr = 1 1/3 1/2 Ir = 2 1 3

If `dim`

exceeds the number of dimensions
of `A`

, then the syntax `[C,I] = max(A,[],dim)`

returns ```
C
= A
```

and `I = ones(size(A))`

.

[C,I] = max(A,[],3)

C = [ 1/8, 1, 1/6] [ 1/3, 1/5, 1/7] [ 1/4, 1/9, 1/2] I = 1 1 1 1 1 1 1 1 1

Create matrices `A`

and `B`

containing
symbolic numbers. Use `max`

to compare each element
of `A`

with the corresponding element of `B`

,
and return the matrix containing the largest elements of each pair.

A = sym(pascal(3)) B = toeplitz(sym([pi/3 pi/2 pi])) maxAB = max(A,B)

A = [ 1, 1, 1] [ 1, 2, 3] [ 1, 3, 6] B = [ pi/3, pi/2, pi] [ pi/2, pi/3, pi/2] [ pi, pi/2, pi/3] maxAB = [ pi/3, pi/2, pi] [ pi/2, 2, 3] [ pi, 3, 6]

When finding the maximum of these complex numbers, `max`

chooses
the number with the largest complex modulus.

modulus = abs([-1 - i, 1 + 1/2*i]) maximum = max(sym([1 - i, 1/2 + i]))

modulus = 1.4142 1.1180 maximum = 1 - 1i

If the numbers have the same complex modulus, `min`

chooses
the number with the largest phase angle.

modulus = abs([1 - 1/2*i, 1 + 1/2*i]) phaseAngle = angle([1 - 1/2*i, 1 + 1/2*i]) maximum = max(sym([1 - 1/2*i, 1/2 + i]))

modulus = 1.1180 1.1180 phaseAngle = -0.4636 0.4636 maximum = 1/2 + 1i

Was this topic helpful?