# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

# `arcsech`

Inverse of the hyperbolic secant function

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

## Syntax

```arcsech(`x`)
```

## Description

`arcsech(x)` represents the inverse of the hyperbolic secant function.

`arcsech` is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals are returned for floating-point interval arguments. Unevaluated function calls are returned for most exact arguments.

The inverse hyperbolic secant function is multivalued. MuPAD® rewrites `arcsech` as ```arcsech(x) = arccosh(1/x)```. The MuPAD implementation for `arccosh` returns values on the main branch defined by the following restriction of the imaginary part. For any finite complex x, $-\pi <\Im \left(\mathrm{arccosh}\left(x\right)\right)\le \pi$.

The inverse hyperbolic secant function is implemented according to the following relation to the logarithm function: ```arcsech(x) = ln(1/x + (1/x - 1)^(1/2)*(1/x + 1)^(1/2))```. See Example 2.

Consequently, the branch cuts are the real intervals (-∞, 0) and (1, ∞) together with the imaginary axis.

The values jump when the argument crosses a branch cut. See Example 3.

The float attributes are kernel functions, and floating-point evaluation is fast.

## Environment Interactions

When called with a floating-point argument, `arcsech` is sensitive to the environment variable `DIGITS` which determines the numerical working precision.

## Examples

### Example 1

Call `arcsech` with the following exact and symbolic input arguments:

```arcsech(1), arcsech(1/sqrt(3)), arcsech(5 + I), arcsech(1/3), arcsech(I), arcsech(2)```

`arcsech(-x), arcsech(x + 1), arcsech(1/x)`

Floating-point values are computed for floating-point arguments:

`arcsech(0.1234), arcsech(5.6 + 7.8*I), arcsech(1.0/10^20)`

Floating-point intervals are computed for interval arguments:

`arcsech(0.5...1), arcsech(0.1234...0.12345)`

### Example 2

The inverse hyperbolic functions can be rewritten in terms of the logarithm function:

`rewrite(arcsech(x), ln)`

### Example 3

The values jump when crossing a branch cut:

`arcsech(2.0 + I/10^10), arcsech(2.0 - I/10^10)`

On the branch cut, the values of `arcsech` coincide with the limit “from below” for real arguments ```x > 1```:

```limit(arcsech(2.0 - I/n), n = infinity); limit(arcsech(2.0 + I/n), n = infinity); arcsech(2.0)```

The values coincide with the limit “from above” for real `x < 0`:

```limit(arcsech(-2.0 - I/n), n = infinity); limit(arcsech(-2.0 + I/n), n = infinity); arcsech(-2.0)```

### Example 4

`diff`, `float`, `limit`, `series`, and other system functions handle expressions involving the inverse hyperbolic functions:

`diff(arcsech(x), x), float(arcsech(3)*arctanh(5 + I))`

`limit(x/arcsech(x), x = 0)`

`series(arcsech(x), x = 0, 3)`

## Parameters

 `x`

## Return Values

Arithmetical expression or floating-point interval

`x`