Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

fresnelC

The Fresnel cosine integral function

MuPAD® notebooks are not recommended. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

Syntax

fresnelC(z)

Description

fresnelC(z) = 0zcos(πt22)dt.

The function C = fresnelC is analytic throughout the complex plane. It satisfies fresnelC(-z) = -fresnelC(z), fresnelC(conjugate(z)) = conjugate(fresnelC(z)), fresnelC(I*z) = I*fresnelC(z) for all complex values of z.

fresnelC(z) returns special values for z = 0, z = ±∞, and z = ±i∞. Symbolic function calls are returned for all other symbolic values of z. In a MuPAD® notebook fresnelC(z) appears in a typeset notation as C(z).

For floating-point arguments, fresnelC returns floating-point values.

simplify and Simplify, fresnelC uses the reflection rule fresnelC(-z) = -fresnelC(z) to create a "normal form" of symbolic function calls. See Example 3.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call the Fresnel cosine integral function with various arguments:

fresnelC(0),
fresnelC(1),
fresnelC(PI + I),
fresnelC(z),
fresnelC(infinity)

For floating-point arguments, fresnelC returns floating-point values:

fresnelC(1.0),
fresnelC(float(PI)),
fresnelC(-3.45 + 0.75*I)

Example 2

diff, float, limit, series, and other functions handle expressions involving the Fresnel cosine integral function:

diff(fresnelC(x), x)

float(fresnelC(PI))

limit(fresnelC(x), x = infinity)

series(fresnelC(x), x = 0)

Example 3

simplify uses the reflection rule fresnelC(-z) = -fresnelC(z) to create a "normal form" of symbolic function calls:

simplify(fresnelC(1 - x)),
Simplify(fresnelC(x - 1))

Parameters

z

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

z

See Also

MuPAD Functions

Was this topic helpful?