gcd
Greatest common divisor of polynomials
MuPAD® notebooks are not recommended. Use MATLAB® live scripts instead.
MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.
gcd(p
,q, …
) gcd(f
,g, …
)
gcd(p, q, ...)
returns the greatest common
divisor of the polynomials p, q,
… The coefficient
ring of the polynomials may either be the integers or the rational
numbers, Expr
, a residue class ring IntMod(n)
with
a prime number n
, or a domain.
All polynomials must have the same indeterminates and the same coefficient ring.
Polynomial expressions are converted to polynomials. See poly
for details.
The return value is of the same type as the input polynomials,
i.e., either a polynomial of type DOM_POLY
or a polynomial
expression.
gcd
returns 0 if
all arguments are 0, or if
no argument is given. If at least one of the arguments is 
1 or 1,
then gcd
returns 1.
Use igcd
if
all arguments are known to be integers, since it is much faster than gcd
.
The greatest common divisor of two polynomial expressions can be computed as follows:
gcd(6*x^3 + 9*x^2*y^2, 2*x + 2*x*y + 3*y^2 + 3*y^3)
f := (x  sqrt(2))*(x^2 + sqrt(3)*x1): g := (x  sqrt(2))*(x  sqrt(3)): gcd(f, g)
One may also choose polynomials as arguments:
p := poly(2*x^2  4*x*y  2*x + 4*y, [x, y], IntMod(17)): q := poly(x^2*y  2*x*y^2, [x, y], IntMod(17)): gcd(p, q)
delete f, g, p, q:

polynomials of
type 

Polynomial or a polynomial expression.
f
, g
, p
, q
If the arguments are polynomials with coefficients from a domain,
then the domain must have the methods "gcd"
and "_divide"
.
The method "gcd"
must return the greatest common
divisor of any number of domain elements. The method "_divide"
must
divide two domain elements. If domain elements cannot be divided,
this method must return FAIL
.