Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

groebner::dimension

Dimension of the affine variety generated by polynomials

MuPAD® notebooks are not recommended. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

Syntax

groebner::dimension(polys, <order>)

Description

groebner::dimension(polys) computes the dimension of the affine variety generated by the polynomials in the set or list polys.

The rules laid down in the introduction to the groebner package concerning the polynomial types and the ordering apply.

The polynomials in the list polys must all be of the same type. In particular, do not mix polynomials created via poly and polynomial expressions!

Examples

Example 1

An example from the book of Cox, Little and O'Shea (see below):

groebner::dimension([y^2*z^3, x^5*z^4, x^2*y*z^2])

Parameters

polys

A list or set of polynomials or polynomial expressions of the same type. The coefficients in these polynomials and polynomial expressions can be arbitrary arithmetical expressions.

order

One of the identifiers DegInvLexOrder, DegreeOrder, and LexOrder, or a user-defined term ordering of type Dom::MonomOrdering. The default ordering is DegInvLexOrder.

Return Values

Nonnegative integer

Algorithms

First, the Gröbner basis of the given polynomials with respect to the given monomial ordering is computed using groebner::gbasis. This Gröbner basis is then used to compute the dimension of the affine variety generated by the polynomials.

References

The implemented algorithm is described in Cox, Little, O'Shea: "Ideals, Varieties and Algorithms", Springer, 1992, Chapter 9.

See Also

MuPAD Functions

Was this topic helpful?