# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

# `IntMethod`

Method for integral approximation

MuPAD® notebooks are not recommended. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

## Value Summary

 Optional `Exact`, `RiemannLeft`, `RiemannRight`, `RiemannLower`, `RiemannUpper`, `RiemannMiddle`, `RiemannLowerAbs`, `RiemannUpperAbs`, `Simpson`, or `Trapezoid`

## Graphics Primitives

ObjectsIntMethod Default Values
`plot::Integral``Exact`

## Description

`IntMethod` determines the method of the visualization of `plot::Integral` objects.

Following methods are implemented:

• Exact

the area between x-axis and function graph is colored

• RiemannLower

display boxes between x-axis and function graph using the smallest value of the function in each subinterval

• RiemannLowerAbs

display boxes between x-axis and function graph using the smallest absolut value of the function in each subinterval

• RiemannUpper

display boxes between x-axis and function graph using the greatest value of the function in each subinterval

• RiemannUpperAbs

display boxes between x-axis and function graph using the greatest absolut value of the function in each subinterval

• RiemannLeft

display boxes between x-axis and function graph using the function value of the left border in each subinterval

• RiemannMiddle

display boxes between x-axis and function graph using the function value of the middle in each subinterval

• RiemannRight

display boxes between x-axis and function graph using the function value of the right border in each subinterval

• Trapezoid

display an approximation of the integral using the Trapezoidal rule

• Simpson

interpolate the graph of the function using Simpsons rule

## Examples

### Example 1

The following example shows all implemented methods:

```f := plot::Function2d(x*(x-3)*(x+4), Color = RGB::Black): plot(plot::Scene2d(plot::Integral(f, 7, IntMethod = method, Color = [frandom() \$ i=1..3], ShowInfo = [IntMethod, Integral, Error, Position = [-5,90]]), f) \$ method in [RiemannLower, RiemannLowerAbs, Trapezoid, RiemannUpper, RiemannUpperAbs, Simpson, RiemannLeft, RiemannRight, RiemannMiddle], Columns = 3, TextFont = [8], Width = 200, Height = 180)```