This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.


Inverse of the complementary error function

MuPAD® notebooks are not recommended. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.




inverfc(x) = inverf(1 - x) computes the inverse of the complementary error function. This function is defined for all complex arguments x.

The inverse function inverfc is singular at the points x = 0 and x = 2.

The inverses of the error functions return floating-point values only for floating-point arguments that belong to a particular interval. Thus, the inverse of the complementary error function inverfc(x) returns floating-point values for real values x from the interval [0, 2]. The implemented exact values are: inverfc(0) = ∞, inverfc(1) = 0, inverfc(2) = -∞. For all other arguments, the error functions return symbolic function calls.

MuPAD® can simplify expressions that contain error functions and their inverses. For real values x, the system applies the following simplification rules:

  • inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) = inverfc(erfc(x)) = x

  • inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) = inverfc(2 - erfc(x)) = -x

For any value x, the system applies the following simplification rules:

  • inverf(-x) = -inverf(x)

  • inverfc(2 - x) = -inverfc(x)

  • erf(inverf(x)) = erfc(inverfc(x)) = x

  • erf(inverfc(x)) = erfc(inverf(x)) = 1 - x

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the environment variable DIGITS, which determines the numerical working precision.


Example 1

You can call the inverse of the complementary error function with exact and symbolic arguments:

inverfc(0), inverfc(1), inverfc(2), inverfc(15), inverfc(x/5), inverfc(1/5), inverfc(sqrt(2))

To approximate exact results with floating-point numbers, use float:

float(inverfc(1/5)), float(inverfc(sqrt(2)))

Alternatively, use floating-points value as arguments:

inverfc(0.2), inverfc(sqrt(2.0))

For floating-point arguments x from the interval [0, 2], inverfc returns floating-point values:

inverfc(0.5), inverfc(1.25)

For floating-point arguments outside of this interval, inverfc returns symbolic function calls:

inverfc(-1.25), inverfc(2.5)

Example 2

diff, float, limit, rewrite, series, and other functions handle expressions involving the inverse of the complementary error function:

diff(inverfc(x), x)

float(ln(3 + inverfc(sqrt(PI))))

limit(1/inverfc(x), x = 1, Right);
limit(1/inverfc(x), x = 1, Left)

rewrite(inverfc(x), inverf)

series(inverfc(x), x = 1)

Return Values

Arithmetical expression

Was this topic helpful?