Accelerating the pace of engineering and science

# Documentation Center

• Trial Software

# linalg::isHermitian

Checks whether a matrix is Hermitian

### Use only in the MuPAD Notebook Interface.

This functionality does not run in MATLAB.

## Syntax

```linalg::isHermitian(A)
```

## Description

linalg::isHermitian(A) determines whether the matrix A is Hermitian, i.e., whether , where denotes the conjugate matrix.

If the component ring of the matrix A does not provide the method "conjugate", then A is tested for symmetry, i.e., linalg::isHermitian returns TRUE if and only if A satisfies the equation A = At.

## Examples

### Example 1

Here is an example of a Hermitian matrix:

`A := Dom::Matrix(Dom::Complex)([[1, I], [-I, 1]])`

`linalg::isHermitian(A)`

The following matrix is not Hermitian:

`B := Dom::Matrix(Dom::Complex)([[1, -I], [-I, 1]])`

`linalg::isHermitian(B)`

The reason is the following:

`linalg::transpose(conjugate(B)) <> B`

### Example 2

Here is an example of a symmetric matrix over the integers:

`C := Dom::Matrix(Dom::Integer)([[1, 2], [2, -1]])`

`linalg::isHermitian(C)`

## Parameters

 A A square matrix of a domain of category Cat::Matrix

## Return Values

Either TRUE or FALSE.