# Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English verison of the page.

# `linopt`::`Transparent::result`

Get the basic feasible solution belonging to the given simplex tableau

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see Convert MuPAD Notebooks to MATLAB Live Scripts.

## Syntax

```linopt::Transparent::result(`tableau`)
```

## Description

`linopt::Transparent::result(tableau)` returns the basic feasible solution belonging to the given simplex tableau `tableau`.

Only the user defined variables are taken into account - the dual prices can be achieved by use of `linopt::Transparent::dual_prices`.

## Examples

### Example 1

We first compute an edge for an initial simplex tableau:

```k := [{x <= 1, y <= 1, x + y >= 2}, 0, NonNegative]: t := linopt::Transparent(k): linopt::Transparent::result(t)```

Now we compute the edge for the final tableau, which is identical to the optimal solution of the linear program given by `k`. We get the final simplex tableau by using `linopt::Transparent::simplex`:

```t := linopt::Transparent(k): t := linopt::Transparent::simplex(t): linopt::Transparent::result(t)```

`linopt::minimize(k)`

`delete k, t:`

## Parameters

 `tableau` A simplex tableau of domain type `linopt::Transparent`

## Return Values

Set containing the values of the user defined variables for the feasible solution.

## References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization. New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston, Kluwer Academic Publishers, 1994.