Get the basic feasible solution belonging to the given simplex tableau

Use only in the MuPAD Notebook Interface.

This functionality does not run in MATLAB.




linopt::Transparent::result(tableau) returns the basic feasible solution belonging to the given simplex tableau tableau.

Only the user defined variables are taken into account - the dual prices can be achieved by use of linopt::Transparent::dual_prices.


Example 1

We first compute an edge for an initial simplex tableau:

k := [{x <= 1, y <= 1, x + y >= 2}, 0, NonNegative]:
t := linopt::Transparent(k):

Now we compute the edge for the final tableau, which is identical to the optimal solution of the linear program given by k. We get the final simplex tableau by using linopt::Transparent::simplex:

t := linopt::Transparent(k):
t := linopt::Transparent::simplex(t):


delete k, t:



A simplex tableau of domain type linopt::Transparent

Return Values

Set containing the values of the user defined variables for the feasible solution.


Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization. New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston, Kluwer Academic Publishers, 1994.

Was this topic helpful?