## Documentation Center |

Numeric solver

`Y = vpasolve(eqns)``Y = vpasolve(eqns,vars)`example`Y = vpasolve(eqns,vars,init_guess)`

`[y1,...,yN] = vpasolve(eqns)``[y1,...,yN] = vpasolve(eqns,vars)`example`[y1,...,yN] = vpasolve(eqns,vars,init_guess)`

`___ = vpasolve(___,Name,Value)`example

` Y = vpasolve(eqns)` numerically
solves the system of equations

` Y = vpasolve(eqns,vars)` numerically
solves the system of equations

` Y = vpasolve(eqns,vars,init_guess)` numerically
solves the system of equations

`[ y1,...,yN] = vpasolve(eqns)` numerically
solves the system of equations

`[ y1,...,yN] = vpasolve(eqns,vars)` numerically
solves the system of equations

`[ y1,...,yN] = vpasolve(eqns,vars,init_guess)` numerically
solves the system of equations

`___ = vpasolve(___, Name,Value)` numerically
solves the equation or system of equations for the variable or variables
using additional options specified by one or more

For polynomial equations, `vpasolve` returns
all solutions:

syms x vpasolve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 == 0, x)

ans = - 0.88011377126068169817875190457835 - 0.76331583387715452512978468102263*i 0.50511377126068169817875190457835 + 0.81598965068946312853227067890656*i 0.50511377126068169817875190457835 - 0.81598965068946312853227067890656*i - 0.88011377126068169817875190457835 + 0.76331583387715452512978468102263*i

For nonpolynomial equations, `vpasolve` returns
the first solution that it finds:

syms x vpasolve(sin(x^2) == 1/2, x)

ans = -226.94447241941511682716953887638

When solving a system of equations, use one output argument to return the solutions in the form of a structure array:

syms x y S = vpasolve([x^3 + 2*x == y, y^2 == x], [x, y])

S = x: [6x1 sym] y: [6x1 sym]

Display solutions by accessing the elements of the structure
array `S`:

S.x

ans = 0 0.2365742942773341617614871521768 - 0.28124065338711968666197895499453 + 1.2348724236470142074859894531946*i 0.16295350624845260578123537890613 + 1.6151544650555366917886585417926*i 0.16295350624845260578123537890613 - 1.6151544650555366917886585417926*i - 0.28124065338711968666197895499453 - 1.2348724236470142074859894531946*i

S.y

ans = 0 0.48638903593454300001655725369801 0.70187356885586188630668751791218 + 0.87969719792982402287026727381769*i - 0.94506808682313338631496614476119 - 0.85451751443904587692179191887616*i - 0.94506808682313338631496614476119 + 0.85451751443904587692179191887616*i 0.70187356885586188630668751791218 - 0.87969719792982402287026727381769*i

When solving a system of equations, use multiple output arguments to assign the solutions directly to output variables. To ensure the correct order of the returned solutions, specify the variables explicitly. The order in which you specify the variables defines the order in which the solver returns the solutions.

syms x y [sol_x, sol_y] = vpasolve([x*sin(10*x) == y^3, y^2 == exp(-2*x/3)], [x, y])

sol_x = 88.90707209659114864849280774681 sol_y = 0.00000000000013470479710676694388973703681918

Plot the two sides of the equation, and then use the plot to specify initial guesses for the solutions.

Plot the left and right sides of the equation `200*sin(x)
= x^3 - 1`:

syms x ezplot(200*sin(x)) hold on ezplot(x^3 - 1) title('200*sin(x) = x^3 - 1')

This equation has three solutions. If you do not specify the
initial guess (zero-approximation), `vpasolve` returns
the first solution that it finds:

vpasolve(200*sin(x) == x^3 - 1, x)

ans = -0.0050000214585835715725440675982988

Find one of the other solutions by specifying the initial point that is close to that solution:

vpasolve(200*sin(x) == x^3 - 1, x, -4)

ans = -3.0009954677086430679926572924945

vpasolve(200*sin(x) == x^3 - 1, x, 3)

ans = 3.0098746383859522384063444361906

You can specify ranges for solutions of an
equation. For example, if you want to restrict your search to only
real solutions, you cannot use assumptions because `vpasolve` ignores
assumptions. Instead, specify a search interval. For the following
equation, if you do not specify ranges, the numeric solver returns
all eight solutions of the equation:

syms x vpasolve(x^8 - x^2 == 3, x)

ans = -1.2052497163799060695888397264341 1.2052497163799060695888397264341 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i - 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i 1.0789046020338265308047436284205*i -1.0789046020338265308047436284205*i 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i

Suppose you need only real solutions of this equation. You cannot
use assumptions on variables because `vpasolve` ignores
them.

assume(x, 'real') vpasolve(x^8 - x^2 == 3, x)

ans = -1.2052497163799060695888397264341 1.2052497163799060695888397264341 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i - 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i 1.0789046020338265308047436284205*i -1.0789046020338265308047436284205*i 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i

Specify the search range to restrict the returned results to
particular ranges. For example, to return only real solutions of this
equation, specify the search interval as `[-Inf Inf]`:

vpasolve(x^8 - x^2 == 3, x, [-Inf Inf])

ans = -1.2052497163799060695888397264341 1.2052497163799060695888397264341

Return only nonnegative solutions:

vpasolve(x^8 - x^2 == 3, x, [0 Inf])

ans = 1.2052497163799060695888397264341

The search range can contain complex numbers. In this case, `vpasolve` uses
a rectangular search area in the complex plane:

vpasolve(x^8 - x^2 == 3, x, [-1, 1 + i])

ans = - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

By default, `vpasolve` returns
the same solution on every call. To find more than one solution for
nonpolynomial equations, set `random` to `true`.
This makes `vpasolve` use a random starting value
which can lead to different solutions on successive calls.

If `random` is not specified, `vpasolve` returns
the same solution on every call.

syms x f = x-tan(x); for n = 1:3 vpasolve(f,x) end

ans = 0 ans = 0 ans = 0

When `random` is set to `true`, `vpasolve` returns
a distinct solution on every call.

syms x f = x-tan(x); for n = 1:3 vpasolve(f,x,'random',true) end

ans = -227.76107684764829218924973598808 ans = 102.09196646490764333652956578441 ans = 61.244730260374400372753016364097

`random` can be used in conjunction with a
search range:

vpasolve(f,x,[10 12],'random',true)

ans = 10.904121659428899827148702790189

`dsolve` | `equationsToMatrix` | `fzero` | `linsolve` | `solve` | `symvar` | `vpa`

Was this topic helpful?