Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

Conduct Back Test on Portfolio

This example shows how to conduct a back test on a set of stocks using transaction cost analysis from the Kissell Research Group.

  • Analyze the implementation of an investment strategy on a specific day or date range.

  • Estimate historical market-impact costs and the corresponding dollar values for the specified historical dates.

  • Analyze the trading costs of different orders on various dates.

To access the example code, enter edit KRGBackTestingExample.m at the command line.

Retrieve Market-Impact Parameters and Load Historical Data

Retrieve the market-impact data from the Kissell Research Group FTP site. Connect to the FTP site using the ftp function with a user name and password. Navigate to the MI_Parameters folder and retrieve the market-impact data in the MI_Encrypted_Parameters.csv file. miData contains the encrypted market-impact date, code, and parameters.

f = ftp('ftp.kissellresearch.com','username','pwd');
cd(f,'MI_Parameters');
mget(f,'MI_Encrypted_Parameters.csv');
close(f)

miData = readtable('MI_Encrypted_Parameters.csv','delimiter', ...
    ',','ReadRowNames',false,'ReadVariableNames',true);

Create a Kissell Research Group transaction-cost analysis object k. Specify initial settings for the date, market-impact code, and number of trading days.

k = krg(miData,datetime('today'),1,250);

Load the example data TradeDataBackTest from the file KRGExampleData.mat, which is included with the Trading Toolbox™.

load KRGExampleData TradeDataBackTest

For a description of the example data, see Kissell Research Group Data Sets.

Prepare Data for Back Testing

Determine the number of stocks numRecords in the portfolio.

numRecords = length(TradeDataBackTest.Symbol);

Preallocate the output data table o.

o = table(TradeDataBackTest.Symbol,TradeDataBackTest.Side, ...
    TradeDataBackTest.Date,NaN(numRecords,1),NaN(numRecords,1), ...
    'VariableNames',{'Symbol','Side','Date','MI','MIDollar'});

Ensure that the number of shares is a positive value using the abs function.

TradeDataBackTest.Shares = abs(TradeDataBackTest.Shares);

Convert trade time trade strategy to the percentage of volume trade strategy.

TradeDataBackTest.TradeTime = TradeDataBackTest.TradeTime ...
    .* TradeDataBackTest.ADV;
TradeDataBackTest.POV = krg.tradetime2pov(TradeDataBackTest.TradeTime, ...
    TradeDataBackTest.Shares);

Conduct Back Test by Estimating Historical Market-Impact Costs

Estimate the historical market-impact costs for each stock in the portfolio on different dates using marketImpact. Convert market-impact cost from decimal into local dollars. Retrieve the resulting data in the output data table o.

for ii = 1:numRecords
    
    k.MiDate = TradeDataBackTest.Date(ii);
    k.MiCode = TradeDataBackTest.MICode(ii);

    o.MI(ii) = marketImpact(k,TradeDataBackTest(ii,:));
    MIDollars = (TradeDataBackTest.Shares(ii) * TradeDataBackTest.Price(ii)) ...
        * o.MI(ii)/10000 * TradeDataBackTest.FXRate(ii);

    o.MIDollar(ii) = MIDollars;
    
end

Display the first three rows of output data.

o(1:3,:)
ans = 

    Symbol    Side       Date        MI     MIDollar
    ______    ____    __________    ____    ________

    'A'       1.00    '5/1/2015'    1.04     103.91 
    'B'       1.00    '5/1/2015'    3.09    3864.44 
    'C'       1.00    '5/1/2015'    8.54    5335.03 

The output data contains these variables:

  • Stock symbol

  • Side

  • Historical trade date

  • Historical market-impact cost in basis points

  • Historical market-impact value in local dollars

References

[1] Kissell, Robert. “Creating Dynamic Pre-Trade Models: Beyond the Black Box.” Journal of Trading. Vol. 6, Number 4, Fall 2011, pp. 8–15.

[2] Kissell, Robert. “TCA in the Investment Process: An Overview.” Journal of Index Investing. Vol. 2, Number 1, Summer 2011, pp. 60–64.

[3] Kissell, Robert. The Science of Algorithmic Trading and Portfolio Management. Cambridge, MA: Elsevier/Academic Press, 2013.

[4] Chung, Grace and Robert Kissell. “An Application of Transaction Costs in the Portfolio Optimization Process.” Journal of Trading. Vol. 11, Number 2, Spring 2016, pp. 11–20.

See Also

|

Related Topics

Was this topic helpful?