Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

appcoef

1-D approximation coefficients

Syntax

A = appcoef(C,L,'wname',N)
A = appcoef(C,L,'wname')
A = appcoef(C,L,Lo_R,Hi_R)
A = appcoef(C,L,Lo_R,Hi_R,N)

Description

appcoef is a one-dimensional wavelet analysis function.

appcoef computes the approximation coefficients of a one-dimensional signal.

A = appcoef(C,L,'wname',N) computes the approximation coefficients at level N using the wavelet decomposition structure [C,L] (see wavedec for more information).

'wname' is a character vector containing the wavelet name. Level N must be an integer such that 0 N length(L)-2.

A = appcoef(C,L,'wname') extracts the approximation coefficients at the last level: length(L)-2.

Instead of giving the wavelet name, you can give the filters.

For A = appcoef(C,L,Lo_R,Hi_R) or A = appcoef(C,L,Lo_R,Hi_R,N), Lo_R is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass filter (see wfilters for more information).

Examples

collapse all

This example shows how to extract the level 3 approximation coefficients.

Load the signal consisting of electricity usage data.

load leleccum; 
sig = leleccum(1:3920);

Obtain the DWT down to level 5 with the 'sym4' wavelet.

[C,L] = wavedec(sig,5,'sym4');

Extract the level-3 approximation coefficients. Plot the original signal and the approximation coefficients.

Lev = 3;
a3 = appcoef(C,L,'sym4',Lev);
subplot(2,1,1)
plot(sig); title('Original Signal');
subplot(2,1,2)
plot(a3); title('Level-3 Approximation Coefficients');

You can substitute any value from 1 to 5 for Lev to obtain the approximation coefficients for the corresponding level.

Algorithms

The input vectors C and L contain all the information about the signal decomposition.

Let NMAX = length(L)-2; then C = [A(NMAX) D(NMAX) ... D(1)] where A and the D are vectors.

If N = NMAX, then a simple extraction is done; otherwise, appcoef computes iteratively the approximation coefficients using the inverse wavelet transform.

Extended Capabilities

See Also

|

Introduced before R2006a

Was this topic helpful?