Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

idddtree

Inverse dual-tree and double-density 1-D wavelet transform

Syntax

xrec = idddtree(wt)

Description

example

xrec = idddtree(wt) returns the inverse wavelet transform of the wavelet decomposition (analysis filter bank), wt. wt is the output of dddtree.

Examples

collapse all

Demonstrate perfect reconstruction of a signal using a dual-tree double-density wavelet transform.

Load the noisy Doppler signal. Obtain the dual-tree double-density wavelet transform down to level 5. Invert the transform and demonstrate perfect reconstruction.

load noisdopp;
wt = dddtree('cplxdddt',noisdopp,5,'FSdoubledualfilt',...
     'doubledualfilt');
xrec = idddtree(wt);
max(abs(noisdopp-xrec))
ans = 1.9291e-12

Input Arguments

collapse all

Wavelet transform, returned as a structure from dddtree with these fields:

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'cplxdt', or 'cplxdddt'. The type,'dwt', gives a critically sampled discrete wavelet transform. The other types are oversampled wavelet transforms. 'ddt' is a double-density wavelet transform, 'cplxdt' is a dual-tree complex wavelet transform, and 'cplxdddt' is a double-density dual-tree complex wavelet transform.

Level of wavelet decomposition, specified as a positive integer.

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:

First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the synthesis filters for the corresponding tree.

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform as follows:

  • 'dwt'cfs{j}

    • j = 1,2,... level is the level.

    • cfs{level+1} are the lowpass, or scaling, coefficients.

  • 'ddt'cfs{j}(:,:,k)

    • j = 1,2,... level is the level.

    • k = 1,2 is the wavelet filter.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'cplxdt'cfs{j}(:,:,m)

    • j = 1,2,... level is the level.

    • m = 1,2 are the real and imaginary parts.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'cplxdddt'cfs{j}(:,:,k,m)

    • j = 1,2 level is the level.

    • k = 1,2 is the wavelet filter.

    • m = 1,2 are the real and imaginary parts.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Output Arguments

collapse all

Synthesized 1-D signal, returned as a vector. The row or column orientation of xrec depends on the row or column orientation of the 1-D signal input to dddtree.

Data Types: double

Introduced in R2013b

Was this topic helpful?