Documentation

This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English verison of the page.

Note: This page has been translated by MathWorks. Please click here
To view all translated materals including this page, select Japan from the country navigator on the bottom of this page.

plotdt

Plot dual-tree or double-density wavelet transform

Syntax

Description

example

plotdt(wt) plots the coefficients of the 1-D or 2-D wavelet filter bank decomposition, wt.

Examples

collapse all

Plot the complex dual-tree wavelet transform of the noisy Doppler signal.

Load the noisy Doppler signal. Obtain the complex dual-tree wavelet transform down to level 4.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,4,'dtf1');

Plot the coefficients.

plotdt(wt)

Plot the complex oriented dual-tree wavelet transform of an image.

Load the xbox image. Obtain the complex oriented dual-tree wavelet transform down to level 3.

load xbox;
wt = dddtree2('cplxdt',xbox,3,'dtf1');

Plot the coefficients.

plotdt(wt)

Select the desired level detail coefficients from the drop-down list.

Related Examples

Input Arguments

collapse all

Wavelet transform, returned as a structure from dddtree or dddtree2 with these fields:

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'realdt', 'cplxdt',, 'realdddt', or 'cplxdddt'. 'realdt' and 'realdddt' are only valid for the 2-D wavelet transform. The type, 'dwt', is a critically sampled (nonredundant) discrete wavelet transform for 1-D data or 2-D images. The other decomposition types are oversampled wavelet transforms. For details about transform types see dddtree for 1-D wavelet transforms and dddtree2 for 2-D wavelet transforms.

Level of the wavelet decomposition, specified as a positive integer.

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:

First level decomposition filters specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.

First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and structure of the matrix elements of the cell array depend on the type of wavelet transform and whether the decomposition is 1-D or 2-D. For a 1-D wavelet transform, the coefficients are organized by transform type as follows:

  • 'dwt'cfs{j}

    • j = 1,2,...level is the level.

    • cfs{level+1} are the lowpass, or scaling, coefficients.

  • 'ddt'cfs{j}(:,:,k)

    • j = 1,2,... level is the level.

    • k = 1,2 is the wavelet filter.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'cplxdt'cfs{j}(:,:,m)

    • j = 1,2,... level is the level.

    • m = 1,2 are the real and imaginary parts.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'realdddt'cfs{j}(:,:,d,k)

    • j = 1,2,... level is the level.

    • d = 1,2,3 is the orientation.

    • k = 1,2 is the wavelet transform tree.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'cplxdddt'cfs{j}(:,:,d,k,m)

    • j = 1,2,... level is the level.

    • k = 1,2 is the wavelet transform tree.

    • m = 1,2 are the real and imaginary parts.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

For a 2-D wavelet transform, the coefficients are organized by transform type as follows:

  • 'dwt'cfs{j}(:,:,d)

    • j = 1,2,... level is the level.

    • d = 1,2,3 is the orientation.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'ddt'cfs{j}(:,:,d)

    • j = 1,2,... level is the level.

    • d = 1,2,3,4,5,6,7,8 is the orientation.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'realddt'cfs{j}(:,:,d,k)

    • j = 1,2,... level is the level.

    • d = 1,2,3 is the orientation.

    • k = 1,2 is the wavelet transform tree.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'cplxdt'cfs{j}(:,:,d,k,m)

    • j = 1,2,... level is the level.

    • d = 1,2,3 is the orientation.

    • k = 1,2 is the wavelet transform tree.

    • m = 1,2 are the real and imaginary parts.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'realdddt'cfs{j}(:,:,d,k)

    • j = 1,2,... level is the level.

    • d = 1,2,3 is the orientation.

    • k = 1,2 is the wavelet transform tree.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

  • 'cplxdddt'cfs{j}(:,:,d,k,m)

    • j = 1,2,... level is the level.

    • d = 1,2,3 is the orientation.

    • k = 1,2 is the wavelet transform tree.

    • m = 1,2 are the real and imaginary parts.

    • cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Introduced in R2013b

Was this topic helpful?