symmetric solutions of linear matrix equations

179 views (last 30 days)
I have X symmetric matrix , X is similar to X=[X1, X2, X3; X2, X4, X5; X3, X5, X6 ] size is changeable. and want to compute the unkown values so I vectorize the X.
I vectorize X matrix to solve XA=b but when converting a matrix in one column/row vector there are repeating unkowns but I do not want them in my solution matrix. How can I solve it?
Vec(X)*A=b
Vec(X)=b*A^-1
I want to write a matlab function to solve the problem.
  3 Comments
Dyuman Joshi
Dyuman Joshi on 6 Apr 2024 at 9:52
"X is a symmetric matrix including unkonwn values"
How many values are unknown?
What are the values in A and B?
"I have A and B matrices. I need to solve X
(AX = B )"
(Assuming compatible dimensions) If X is a vector, A*X will be a vector, which will not be equal to be B, a matrix.
Please share the code you have written yet and the values for A and B.
zeynep ozkayikci
zeynep ozkayikci on 6 Apr 2024 at 11:23
I want to write a matlab function to solve the problem. It will take 2 row vectors x and y for example and it will solve for this equation: vec(theta)*(kronecker product of x minus kronecker product of y) where theta is a symmetric square matrix. But when I turn theta matrix to the vector form some of the unkown values of theta are repeating since its symmetric. How can I solve this problem

Sign in to comment.

Accepted Answer

Bruno Luong
Bruno Luong on 7 Apr 2024 at 10:00
Edited: Bruno Luong on 7 Apr 2024 at 10:35
If you have tthe optimization toolbox
% Generate test matrices
n = 3;
A = randn(n);
X=rand(n); X = X+X.';
B = X*A;
% Add small noise to B
B = B + 1e-1*randn(size(B))
B = 3x3
-0.3105 -0.5486 -0.2153 -1.4848 -1.0955 -0.9003 -0.3543 0.1766 0.8062
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
ij = nchoosek(1:n,2)-1;
m = size(ij,1);
r = (1:m)';
C = zeros([m n^2]);
C(r + ij * [n; 1] * m) = 1;
C(r + ij * [1; n] * m) = -1;
M = kron(A',eye(n));
X = lsqlin(M,B(:),[],[],C,zeros(m,1));
Minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
X = reshape(X,n,n)
X = 3x3
0.1068 0.9432 1.0007 0.9432 1.6786 0.5287 1.0007 0.5287 1.4214
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XA = X*A
XA = 3x3
-0.3045 -0.6087 -0.1258 -1.5224 -1.0886 -0.8758 -0.2886 0.1625 0.7665
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
norm(XA-B,'fro')/norm(B,'fro') % error
ans = 0.0602
  2 Comments
Paul
Paul on 7 Apr 2024 at 15:14
Edited: Paul on 7 Apr 2024 at 15:38
Hi Bruno,
Can you explain the mathematical problem that this code is solving?
It looks like the problem is:
Given A, B each n x n, solve for symmetric X s.t that
B - X*A
is minimized in some sense.
Is that correct?
Bruno Luong
Bruno Luong on 7 Apr 2024 at 16:59
Edited: Bruno Luong on 7 Apr 2024 at 17:02
Yes, the problem is
given A, B two (n x n) matrices
minimizing norm(X*A - B, 'fro')
such that X = X.';

Sign in to comment.

More Answers (3)

Bruno Luong
Bruno Luong on 8 Apr 2024 at 8:05
Edited: Bruno Luong on 8 Apr 2024 at 11:01
This is a method that use the small "original" linear system. I use pcg since it a linear solver that can accept function handle instead of matrix coefficients.
No toolbox is required. Note the convergence of pcg seems to be fragile without preconditioning.
% Generate test matrices
n = 5;
A = randn(n);
X=rand(n); X = X+X.';
B = X*A;
% Add small noise to B
B = B + 1e-1*randn(size(B));
% Result from expanded kron system
ij = nchoosek(0:n-1,2);
m = size(ij,1);
r = (1:m)';
C = sparse(r, ij * [n; 1] +1, 1, m, n^2) - ...
sparse(r, ij * [1; n] +1, 1, m, n^2);
M = kron(A, speye(n));
Y=[M*B(:); zeros(m,1)]';
M=[M*M', C';
C, zeros(m)];
X=Y/M;
X = reshape(X(1:n^2),n,n) % symmetric
X = 5x5
15.7701 -10.4191 8.7905 9.7548 -3.7987 -10.4191 9.3762 -5.2915 -4.8205 4.6536 8.7905 -5.2915 5.2898 5.1365 -2.2491 9.7548 -4.8205 5.1365 4.4069 -1.7434 -3.7987 4.6536 -2.2491 -1.7434 3.1308
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
norm(X - X', 'fro');
XA = X*A; % should be close to B
norm(XA-B,'fro')/norm(B,'fro') % error
ans = 0.0294
% New method starts here tor
% Solve
% X = E*Upper, E is a linear operator that expands upper to symmetric matrix
% X*A = B, minimize "fro" norm sense
tu=triu(true(n)); % only UPPER coefficients of that positions is considered
AtB = adj_symmlprod(tu, A, B); % multiply RHS by (E*A)'
upper = pcg(@(upper) normalsymmlprod(upper, tu, A), AtB);
pcg converged at iteration 15 to a solution with relative residual 4.2e-08.
XX = uexpand(upper, tu)
XX = 5x5
15.7701 -10.4191 8.7905 9.7548 -3.7987 -10.4191 9.3762 -5.2915 -4.8205 4.6536 8.7905 -5.2915 5.2898 5.1365 -2.2491 9.7548 -4.8205 5.1365 4.4069 -1.7434 -3.7987 4.6536 -2.2491 -1.7434 3.1308
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
norm(XX*A-B,'fro')/norm(B,'fro') % error
ans = 0.0294
% E operator: Expand triangular part to symmetric matrix
% Note the diagonal is double
function X = uexpand(upper, tu)
X = zeros(size(tu));
X(tu) = upper;
X = X + X.';
end
% Adjoint of uexpand (E')
function upper = adj_uexpand(tu, X)
X = X + X.';
upper = X(tu);
end
% Model E*A
function Y = symmlprod(upper, tu, A)
Y = uexpand(upper, tu)*A;
end
% Adkoint of symmlprod, A'*E'
function upper = adj_symmlprod(tu, A, Y)
upper = adj_uexpand(tu, Y*A');
end
% Model followed by the adjoint
function res = normalsymmlprod(upper, tu, A)
Y = symmlprod(upper, tu, A);
res = adj_symmlprod(tu, A, Y);
end

Bruno Luong
Bruno Luong on 6 Apr 2024 at 10:51
Edited: Bruno Luong on 6 Apr 2024 at 11:24
% Generate test matrices
n = 5;
A = randn(n);
X=rand(n); X = X+X.';
B = A*X;
% Add small noise to B
B = B + 1e-1*randn(size(B))
B = 5x5
-1.0496 -1.2357 -2.2978 -0.0452 -3.8092 -1.8387 -2.2418 -2.9166 -2.9147 -1.3836 1.2053 1.3404 1.6730 0.3741 2.5606 0.2147 -0.4751 0.2241 0.1728 -0.7981 0.1005 0.4824 0.7771 0.2816 1.1183
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[i,j] = find(triu(ones(n),1));
k = sub2ind([n,n],i,j);
l = sub2ind([n,n],j,i);
m = numel(i);
r = (1:m)';
s = [m n^2];
C=accumarray([r k(:)],1,s)-accumarray([r l(:)],1,s);
M = kron(eye(n),A);
Y=[M'*B(:); zeros(m,1)];
M=[M'*M, C';
C zeros(m)];
X=M\Y;
X = reshape(X(1:n^2),n,n) % symmetric
X = 5x5
1.1044 0.8890 0.9223 0.6105 0.4487 0.8890 1.8126 0.8434 1.2570 1.0306 0.9223 0.8434 1.5951 0.7616 1.1951 0.6105 1.2570 0.7616 0.5013 1.6519 0.4487 1.0306 1.1951 1.6519 1.0718
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
norm(X - X', 'fro')
ans = 2.3915e-15
AX = A*X % should be close to B
AX = 5x5
-1.0948 -1.2704 -2.2409 -0.0097 -3.8151 -1.8318 -2.3029 -2.8219 -2.8069 -1.4021 1.2111 1.3671 1.8268 0.2867 2.6107 0.1661 -0.4451 0.2532 0.1078 -0.7411 0.0627 0.4175 0.8071 0.4258 1.1224
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
norm(AX-B,'fro')/norm(B,'fro') % error
ans = 0.0402
% It should be better than solving original matrix then symmetrizeing it
XX = A\B;
XX = 1/2*(XX+XX');
norm(A*XX-B,'fro')/norm(B,'fro')
ans = 0.1193
  11 Comments
Torsten
Torsten on 7 Apr 2024 at 14:57
Edited: Torsten on 7 Apr 2024 at 15:00
So easy - I didn't come up with it. Thanks for your help.
Since x0 is ignored, one could remove its use.
Bruno Luong
Bruno Luong on 7 Apr 2024 at 15:18
"Since x0 is ignored, one could remove its use."
Oh you are completely right.

Sign in to comment.


Paul
Paul on 7 Apr 2024 at 20:33
Moved: Bruno Luong on 7 Apr 2024 at 23:13
Here's an alternative using mldivide, \ that arrives at the same result for this particular problem. Is it effectively the same solution as yours using lsqlin?
rng(100)
% Generate test matrices
n = 3;
A = randn(n);
X=rand(n); X = X+X.';
B = X*A;
% Add small noise to B
B = B + 1e-1*randn(size(B));
ij = nchoosek(1:n,2)-1;
m = size(ij,1);
r = (1:m)';
C = zeros([m n^2]);
C(r + ij * [n; 1] * m) = 1;
C(r + ij * [1; n] * m) = -1;
M = kron(A',eye(n));
X = lsqlin(M,B(:),[],[],C,zeros(m,1));
Minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
X = reshape(X,n,n)
X = 3x3
1.3098 0.0872 1.5716 0.0872 0.4135 1.4363 1.5716 1.4363 0.8750
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XA = X*A;
norm(XA-B,'fro')/norm(B,'fro') % error
ans = 0.0604
XX = (kron(eye(3),A')*insmat(3)) \ reshape(B',[],1)
XX = 6x1
1.3098 0.0872 1.5716 0.4135 1.4363 0.8750
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XX = reshape(insmat(3)*XX,3,3)
XX = 3x3
1.3098 0.0872 1.5716 0.0872 0.4135 1.4363 1.5716 1.4363 0.8750
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function Is = insmat(s)
% reference: Vetter, W.J., "Vector Structures and Solutions of Linear
% Matrix Equations," Linear Algebra and Its Applications, 10, 181-188,
% 1975
% first form the index matrix m
m = tril(ones(s,s));
m(m>0) = 1:(s*(s+1)/2);
m = m + tril(m,-1)';
I = eye(s*(s+1)/2,s*(s+1)/2);
Is = I(m(:),:);
end
  1 Comment
Bruno Luong
Bruno Luong on 7 Apr 2024 at 23:11
Moved: Bruno Luong on 7 Apr 2024 at 23:15
". Is it effectively the same solution as yours using lsqlin?"
Not necessary your method parametrizes the subspace of matrices that meet the constraints X = X.', then solve the leastsqure in term of parametrization.
This can also be done by find the (orthogonal) basis null C, which can be carried out by QR decomosition on C'.
Other alternative is forming a KKT system and solve it.
Not sure lsqlin uses which method.
The KKT method is used by my my second answer.

Sign in to comment.

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!