Discover MakerZone

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn more

Discover what MATLAB® can do for your career.

Opportunities for recent engineering grads.

Apply Today

how to generate background noise in a color image

Asked by ARUN SAI on 17 May 2013

generation of background noise in a color image

0 Comments

ARUN SAI

Tags

2 Answers

Answer by Image Analyst on 17 May 2013

How about imnoise()? Or if you have a specific type of noise in mind, then let's hear it.

2 Comments

ARUN SAI on 17 May 2013

i want background noise to be created ie, white spot like which can be detected and removed using gradient

Image Analyst on 17 May 2013

Please run my slat and pepper noise removal demo.

% Demo to add "salt and pepper" noise to a color image,
% then restore the image by removing this noise with a 
% modified median filter that acts only on the noise pixels
% and not upon "good" non-noise pixels.
clc;	% Clear command window.
clear;	% Delete all variables.
close all;	% Close all figure windows except those created by imtool.
imtool close all;	% Close all figure windows created by imtool.
workspace;	% Make sure the workspace panel is showing.
fontSize = 15;
% Read in a standard MATLAB color demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'peppers.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
if ~exist(fullFileName, 'file')
	% Didn't find it there.  Check the search path for it.
	fullFileName = baseFileName; % No path this time.
	if ~exist(fullFileName, 'file')
		% Still didn't find it.  Alert user.
		errorMessage = sprintf('Error: %s does not exist.', fullFileName);
		uiwait(warndlg(errorMessage));
		return;
	end
end
rgbImage = imread(fullFileName);
% Get the dimensions of the image.  numberOfColorBands should be = 3.
[rows, columns, numberOfColorBands] = size(rgbImage);
% Display the original color image.
subplot(3, 4, 1);
imshow(rgbImage);
title('Original Color Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'Position', get(0,'Screensize')); 
% Give a name to the title bar.
set(gcf,'name','Salt and Pepper Noise Removal Demo','numbertitle','off') 
% Extract the individual red, green, and blue color channels.
redChannel = rgbImage(:, :, 1);
greenChannel = rgbImage(:, :, 2);
blueChannel = rgbImage(:, :, 3);
% Display the individual red, green, and blue color channels.
subplot(3, 4, 2);
imshow(redChannel);
title('Red Channel', 'FontSize', fontSize);
subplot(3, 4, 3);
imshow(greenChannel);
title('Green Channel', 'FontSize', fontSize);
subplot(3, 4, 4);
imshow(blueChannel);
title('Blue Channel', 'FontSize', fontSize);
% Generate a noisy image.  This has salt and pepper noise independently on
% each color channel so the noise may be colored.
noisyRGB = imnoise(rgbImage,'salt & pepper', 0.05);
subplot(3, 4, 5);
imshow(noisyRGB);
title('Color Image with Salt and Pepper Noise', 'FontSize', fontSize);
% Extract the individual red, green, and blue color channels.
redChannel = noisyRGB(:, :, 1);
greenChannel = noisyRGB(:, :, 2);
blueChannel = noisyRGB(:, :, 3);
% Display the noisy individual color channel images.
subplot(3, 4, 6);
imshow(redChannel);
title('Noisy Red Channel', 'FontSize', fontSize);
subplot(3, 4, 7);
imshow(greenChannel);
title('Noisy Green Channel', 'FontSize', fontSize);
subplot(3, 4, 8);
imshow(blueChannel);
title('Noisy Blue Channel', 'FontSize', fontSize);
% Median Filter the channels:
redMF = medfilt2(redChannel, [3 3]);
greenMF = medfilt2(greenChannel, [3 3]);
blueMF = medfilt2(blueChannel, [3 3]);
% Find the noise in the red.
noiseImage = (redChannel == 0 | redChannel == 255);
% Get rid of the noise in the red by replacing with median.
noiseFreeRed = redChannel;
noiseFreeRed(noiseImage) = redMF(noiseImage);
% Find the noise in the green.
noiseImage = (greenChannel == 0 | greenChannel == 255);
% Get rid of the noise in the green by replacing with median.
noiseFreeGreen = greenChannel;
noiseFreeGreen(noiseImage) = greenMF(noiseImage);
% Find the noise in the blue.
noiseImage = (blueChannel == 0 | blueChannel == 255);
% Get rid of the noise in the blue by replacing with median.
noiseFreeBlue = blueChannel;
noiseFreeBlue(noiseImage) = blueMF(noiseImage);
% Display the restored individual color channel images.
subplot(3, 4, 10);
imshow(noiseFreeRed);
title('Restored Red Channel', 'FontSize', fontSize);
subplot(3, 4, 11);
imshow(noiseFreeGreen);
title('Restored Green Channel', 'FontSize', fontSize);
subplot(3, 4, 12);
imshow(noiseFreeBlue);
title('Restored Blue Channel', 'FontSize', fontSize);
% Reconstruct the noise free RGB image
rgbFixed = cat(3, noiseFreeRed, noiseFreeGreen, noiseFreeBlue);
subplot(3, 4, 9);
imshow(rgbFixed);
title('Restored Image', 'FontSize', fontSize);
Image Analyst
Answer by ARUN SAI on 18 May 2013

tell me the difference between background and foreground noise.

1 Comment

Image Analyst on 18 May 2013

Its location. You somehow define foreground and background for your image. For example the girl is the "foreground" and the beach and ocean is the "background." If you want, you can define "background noise" as that noise that occurs in the part of your image that you define as background. Similar for foreground.

ARUN SAI

Contact us