MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn moreOpportunities for recent engineering grads.

Apply Today**New to MATLAB?**

Asked by Sajid Khan
on 20 May 2013

Hi there,

I am debugging a code in matlab, but sometime it starts to give me the error "Subscript indices must either be real positive integers or logicals." and it goes on untill I restart my matlab.

here is my code,

%% close all clc image = rgb2gray(imread('pepper.jpg')); Mean_added = 0; Variance_added=400; matrix_uniform = Mean_added+sqrt(Variance_added).*randn(size(image)); noisy_image = image+uint8(matrix_uniform); denoised_wiener = wiener2(noisy_image,[7 7]); % K = imrest(noisy_image,'atrimmed',3,3); diff_wiener = noisy_image - denoised_wiener; % % figure, subplot(1,3,1),imshow(uint8(noisy_image)), subplot(1,3,2), imshow(K), subplot(1,3,3), imhist(uint8(noisy_image)) figure, subplot(1,3,1),imshow(uint8(noisy_image)), subplot(1,3,2), imshow(denoised_wiener), subplot(1,3,3), imhist(uint8(noisy_image)) figure,imshow(diff_wiener) kurt_Wiener = mean(kurtosis(matrix_uniform)) kurt_Wiener = mean(kurtosis(matrix_uniform(:))) skew_Wiener = skewness(matrix_uniform(:)) [pixelCounts GLs] = imhist(matrix_uniform); [skew, kurtosis] = GetSkewAndKurtosis(GLs, pixelCounts)

And the error line which is mentioned is

Error in practice (line 16) kurt_Wiener = mean(kurtosis(matrix_uniform))

*No products are associated with this question.*

Answer by Image Analyst
on 20 May 2013

In case you're interested, here's my demo for computing skew and kurtosis:

% Get the mean gray level, standard deviation, skew, and kurtosis from the histogram bin values. function ComputeImageMomentsDemo() try clc; % Clear the command window. close all; % Close all figures (except those of imtool.) imtool close all; % Close all imtool figures. workspace; % Make sure the workspace panel is showing. fontSize = 20;

% Change the current folder to the folder of this m-file. if(~isdeployed) cd(fileparts(which(mfilename))); end

% Check that user has the Image Processing Toolbox installed. hasIPT = license('test', 'image_toolbox'); if ~hasIPT % User does not have the toolbox installed. message = sprintf('Sorry, but you do not seem to have the Image Processing Toolbox.\nDo you want to try to continue anyway?'); reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes'); if strcmpi(reply, 'No') % User said No, so exit. return; end end

folder = fullfile(matlabroot, '\toolbox\images\imdemos'); if ~isdir(folder) errorMessage = sprintf('Error: The following folder does not exist:\n%s', folder); uiwait(warndlg(errorMessage)); return; end % Check for bmp, tif, jpg, and png images. filePattern = fullfile(folder, '*.tif'); imageFiles1 = dir(filePattern); filePattern = fullfile(folder, '*.png'); imageFiles2 = dir(filePattern); filePattern = fullfile(folder, '*.bmp'); imageFiles3 = dir(filePattern); filePattern = fullfile(folder, '*.jpg'); imageFiles4 = dir(filePattern); imageFiles = [imageFiles1; imageFiles2; imageFiles3; imageFiles4]; numberOfImageFiles = length(imageFiles);

% Bail out if there are no images in the folder. if numberOfImageFiles == 0 errorMessage = sprintf('Error: The following folder does not contain any tif images:\n%s', folder); uiwait(warndlg(errorMessage)); return; end % Preallocate space for a moments matrix. moments = zeros(numberOfImageFiles, 4); for k = 1 : numberOfImageFiles % Get the baseFileName and extension. baseFileName = imageFiles(k).name; % Get the extension separately. [f b extension] = fileparts(baseFileName); % Get rid fo the dot and convert to upper case. extension = upper(extension(2:end)); % Get the full filename, with path prepended. fullFileName = fullfile(folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); if ~exist(fullFileName, 'file') % Didn't find it there. Check the search path for it. fullFileName = baseFileName; % No path this time. if ~exist(fullFileName, 'file') % Still didn't find it. Alert user. errorMessage = sprintf('Error: %s does not exist.', fullFileName); uiwait(warndlg(errorMessage)); return; end end grayImage = imread(fullFileName); % Get the dimensions of the image. numberOfColorBands should be = 1. [rows columns numberOfColorBands] = size(grayImage); % Let's compute moments only for gray scale images. % If we read in a color image, convert to grayscale by taking the green channel. if numberOfColorBands >= 2 grayImage = grayImage(:,:,2); end % Display the original gray scale image. subplot(2, 2, 3); imshow(grayImage, []); axis on; % Show pixel coordinates along the axis (edges of the image). caption = sprintf('Gray Scale %s-Format Image', extension); title(caption, 'FontSize', fontSize); if k == 1 % Enlarge figure to full screen. set(gcf, 'units','normalized','outerposition',[0 0 1 1]); % Maximize figure. % Give a name to the title bar. set(gcf,'name','Image Moments Demo','numbertitle','off') end

% Let's compute and display the histogram. [pixelCounts grayLevels] = imhist(grayImage); subplot(2, 2, 4); bar(pixelCounts); grid on; title('Histogram of Gray Scale Image', 'FontSize', fontSize); xlim([0 grayLevels(end)]); % Scale x axis manually.

% Compute the image moments. [meanGL stdDev skew kurtosis] = ComputeImageMoments(grayLevels, pixelCounts); % Plot the image moments for all images up through this one. moments(k, 1) = meanGL; moments(k, 2) = stdDev; moments(k, 3) = skew; moments(k, 4) = kurtosis; subplot(2,1,1); plot(moments, 'LineWidth', 3); title('Intensity Moments of Gray Scale Image', 'FontSize', fontSize); grid on; legend('Mean', 'Standard Deviation', 'Skewness', 'Kurtosis'); message = sprintf('There are %d pixels in %s (#%d of %d).\nThe mean gray level is %.2f.\nThe standard deviation of the gray levels is %.2f.\nThe skewness of the gray levels is %.2f.\nThe kurtosis of the gray levels is %.2f.',... sum(pixelCounts), baseFileName, k, numberOfImageFiles, meanGL, stdDev, skew, kurtosis); if k < numberOfImageFiles promptMessage = sprintf('%s\n\nDo you want to Continue processing,\nor Cancel to abort processing?', message); button = questdlg(promptMessage, 'Continue', 'Continue', 'Cancel', 'Continue'); if strcmp(button, 'Cancel') break; end else promptMessage = sprintf('%s\n\nDone with demo!', message); msgbox(promptMessage); end end % Read in a standard MATLAB gray scale demo image. catch ME errorMessage = sprintf('Error in ComputeImageMoments().\nThe error reported by MATLAB is:\n\n%s', ME.message); fprintf(1, '%s\n', errorMessage); uiwait(warndlg(errorMessage)); end return; % from ComputeImageMomentsDemo

%------------------------------------------------------------------------------------------------------ % Computes first, second, third, and fourth central moments of the gray levels. % Get the mean gray level, standard deviation, skew, and kurtosis from the histogram bin values. % Note: gray level moments are different than spatial moments which are more like rotational moments of intertia. % Uses formulas from http://itl.nist.gov/div898/handbook/eda/section3/eda35b.htm % "Skewness is a measure of symmetry, or more precisely, the lack of symmetry. % A distribution, or data set, is symmetric if it looks the same to the left and right of the center point. % The skewness for a normal distribution is zero, and any symmetric data should have a skewness near zero. % Negative values for the skewness indicate data that are skewed left and positive values for the skewness % indicate data that are skewed right. By skewed left, we mean that the left tail is long relative to the right tail. % % Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. % That is, data sets with high kurtosis tend to have a distinct peak near the mean, % decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend % to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case." function [meanGL stdDev skew kurtosis] = ComputeImageMoments(GLs, pixelCounts) try % Get the number of pixels in the histogram. numberOfPixels = sum(pixelCounts); % Get the mean gray lavel. meanGL = sum(GLs .* pixelCounts) / numberOfPixels; % Get the variance, which is the second central moment. varianceGL = sum((GLs - meanGL) .^ 2 .* pixelCounts) / (numberOfPixels-1); % Get the standard deviation. stdDev = sqrt(varianceGL); % Get the skew. skew = sum((GLs - meanGL) .^ 3 .* pixelCounts) / ((numberOfPixels - 1) * stdDev^3); % Get the kurtosis. kurtosis = sum((GLs - meanGL) .^ 4 .* pixelCounts) / ((numberOfPixels - 1) * stdDev^4); catch ME errorMessage = sprintf('Error in ComputeImageMoments().\nThe error reported by MATLAB is:\n\n%s', ME.message); uiwait(warndlg(errorMessage)); set(handles.txtInfo, 'String', errorMessage); end return; % from ComputeImageMoments

Answer by Walter Roberson
on 20 May 2013

You are using kurtosis both as a function call and a variable. As Ian indicates in his comment, that is going to leave kurtosis as a variable for the next run, giving you problems. It is advised that you do not use function names as variables.

## 2 Comments

## Wayne King (view profile)

Direct link to this comment:http://www.mathworks.com/matlabcentral/answers/76386#comment_149854

Can you please format your code. I was going to do it, but you have a number of comments in there and I'm not sure what you want to leave commented out.

## Iain (view profile)

Direct link to this comment:http://www.mathworks.com/matlabcentral/answers/76386#comment_149872

Try ensuring that "kutosis" is cleared at the start of the m-script.