Discover MakerZone

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn more

Discover what MATLAB® can do for your career.

Opportunities for recent engineering grads.

Apply Today

Everett Rubel

View profile information

Professional Interests

writing, user experience

392Rank
5Badges
715Score

Everett Rubel submitted Solution 154556 to Problem 76. De-dupe

on 26 Oct 2012

Everett Rubel submitted a Comment to Problem 986. Penny Flipping: Reverse subsets of a sequence of coins until you recover the original configuration

Jean-Marie: The transformation between steps 2 and 3 (1 0 0 -> 1 1 0) is the same as for the one between steps 8 and 9; we are working with the entire stack of 3 coins. The first/top coin exchanges with the last/bottom coin and then all coins change their orientation.

on 25 Oct 2012

Everett Rubel submitted a Comment to Problem 986. Penny Flipping: Reverse subsets of a sequence of coins until you recover the original configuration

Jean-Marie: I think the phrase, "invert the substack" is the issue. For me, this means to take the substack and invert it as a unit. The coins exchange positions in the substack as well as inverting their values. It is a single physical action that translates into two separate operations on the coins. I may have done better to write, "flip the substack as a unit."

on 18 Oct 2012

Everett Rubel submitted a Comment to Problem 42. Find the alphabetic word product

For the bonus question, we can rule out any number that has a prime factor greater than 26 (z). The product found by Jason Friedman is the first number greater than 10^6 that does not have such a prime factor. The product 999856 is the largest number less than 10^6 to be part of a possible solution.

on 14 Oct 2012

Everett Rubel liked Solution 146671

on 10 Oct 2012

Everett Rubel received Promoter badge for Solution 146671

on 10 Oct 2012

Everett Rubel received Speed Demon badge

on 10 Oct 2012