Discover MakerZone

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn more

Discover what MATLAB® can do for your career.

Opportunities for recent engineering grads.

Apply Today

Solution 195689

Submitted on 23 Jan 2013 by Luu Trieu Phat

Correct

114Size
Leading solution size is 104.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test
Code Input and Output
1
Pass
 
%% Check linear interpolation
X = [4800; 5100];
Y = [7.5247; 7.2851]*1e-1;
x = 5000;
y = Newton_Interp(X,Y,x)
y_correct = 0.73650;
assert(abs(y-y_correct)<1e-4)
y =
    0.7365
2
Pass
 
%% Check Newton polynomial coefficients
X = [4800; 5100];
Y = [7.5247; 7.2851];
x = 5000;
y_correct = 7.3650;
b_correct = [7.5247, -0.00079867];
[y,b] = Newton_Interp(X,Y,x)
assert(abs(y-y_correct)<1e-4)
assert(norm(b-b_correct)<1e-3)
y =
    7.3650
b =
    7.5247   -0.0008
3
Pass
 
%% Check quadratic interpolation
X = [300, 400, 500];
Y = [0.616, 0.525, 0.457];
x = 350;
[y,b] = Newton_Interp(X,Y,x)
y_correct = 0.567625;
b_correct = [0.616, -0.00091, 0.00000115];
assert(abs(y-y_correct)<1e-4)
assert(norm(b-b_correct)<1e-3)
y =
    0.5676
b =
    0.6160   -0.0009    0.0000
4
Pass
 
%% Check quadratic interpolation for log
X = [1, 4 6];
Y = log(X);
x = 2;
[y,b] = Newton_Interp(X,Y,x)
y_correct = 0.5658;
b_correct = [0, 0.4620981, -0.0518731];
assert(abs(y-y_correct)<1e-4)
assert(norm(b-b_correct)<1e-3)
y =
    0.5658
b =
         0    0.4621   -0.0519