Discover MakerZone

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn more

Discover what MATLAB® can do for your career.

Opportunities for recent engineering grads.

Apply Today

Correct

32Size
Leading solution size is 30.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test
Code Input and Output
1
Pass
 
%% Simple Trapezoidal Rule
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
assert(isequal(trapezoidal_rule(f,a,b,1),5280))
[Warning: File: trapezoidal_rule.m Line: 12 Column: 5
This try-catch syntax will continue to work in R2007b,
but may be illegal or may mean something different in future
releases of MATLAB.
See Release Notes for MATLAB Version 7.4, "Warning Generated
by try-catch" for details.]
[> In verifyCode>evaluateCode at 189
  In verifyCode at 40
  In fevalJSON at 14]
n =
     1
2
Pass
 
%% Composite Trapezoidal Rule for 2 intervals
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
assert(isequal(trapezoidal_rule(f,a,b,2),2634))
n =
     2
3
Pass
 
%% Composite Trapezoidal Rule for 4 intervals
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
assert(isequal(trapezoidal_rule(f,a,b,4),1516.875))
n =
     4
4
Pass
 
%% Exact analytical comparison
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
P=polyint(p);
I_correct=polyval(P,b)-polyval(P,a);
I=trapezoidal_rule(f,a,b);
assert(abs(I-I_correct)<1)

                    
5
Pass
 
%% Exact analytical comparison--higher tolerance
p=[2 0 -4 0 -1 1];
a=-2;
b=4;
f = @(x) polyval(p,x);
I = trapezoidal_rule(f,a,b,1000);
P=polyint(p);
I_correct=polyval(P,b)-polyval(P,a);
assert(abs(trapezoidal_rule(f,a,b,1000)-I_correct)<1e-1)
n =
        1000
n =
        1000