Discover MakerZone

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn more

Discover what MATLAB® can do for your career.

Opportunities for recent engineering grads.

Apply Today

Solution 233390

Submitted on 20 Apr 2013 by Jean-Marie SAINTHILLIER

Correct

46Size
Leading solution size is 14.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test
Code Input and Output
1
Pass
 
%%
M = [ 0.091273   0.060806
   0.130562   0.076233
   0.184484   0.170092
   0.197685   0.244964
   0.226948   0.308231
   0.232963   0.309789
   0.321582   0.329059
   0.343480   0.384513
   0.612326   0.505868
   0.691264   0.529026
   0.710301   0.595951
   0.733409   0.637104
   0.774992   0.649954
   0.836475   0.717744]
x = 0.881524;
y_correct = 0.857148;
assert(abs((new_point_fit(M,x)-y_correct)/y_correct)<=0.1)
M =
    0.0913    0.0608
    0.1306    0.0762
    0.1845    0.1701
    0.1977    0.2450
    0.2269    0.3082
    0.2330    0.3098
    0.3216    0.3291
    0.3435    0.3845
    0.6123    0.5059
    0.6913    0.5290
    0.7103    0.5960
    0.7334    0.6371
    0.7750    0.6500
    0.8365    0.7177
2
Pass
 
%%
M = [  0.016105   0.042602
   0.048845   0.100409
   0.135680   0.162205
   0.382335   0.174843
   0.409982   0.219579
   0.505942   0.247533
   0.535645   0.463607
   0.553299   0.539963
   0.562505   0.629237
   0.605515   0.665519
   0.609794   0.668600
   0.718378   0.761209
   0.803968   0.822402
   0.996661   0.883440]
x = 0.999173;
y_correct = 0.954605;
assert(abs((new_point_fit(M,x)-y_correct)/y_correct)<=0.1)
M =
    0.0161    0.0426
    0.0488    0.1004
    0.1357    0.1622
    0.3823    0.1748
    0.4100    0.2196
    0.5059    0.2475
    0.5356    0.4636
    0.5533    0.5400
    0.5625    0.6292
    0.6055    0.6655
    0.6098    0.6686
    0.7184    0.7612
    0.8040    0.8224
    0.9967    0.8834
3
Pass
 
%%
M = [  0.0705596   0.0010882
   0.0880270   0.1284582
   0.1557501   0.1819287
   0.4294053   0.1980035
   0.4354657   0.4193907
   0.5222490   0.6849248
   0.6131108   0.7573705
   0.6277358   0.7864304
   0.6678857   0.8790018]
x = 0.9916796;
y_correct = 0.7335639;
assert(abs((new_point_fit(M,x)-y_correct)/y_correct)<=0.1)
M =
    0.0706    0.0011
    0.0880    0.1285
    0.1558    0.1819
    0.4294    0.1980
    0.4355    0.4194
    0.5222    0.6849
    0.6131    0.7574
    0.6277    0.7864
    0.6679    0.8790