MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi test

Learn moreOpportunities for recent engineering grads.

Apply TodayThe Poker Series consists of many short, well defined functions that when combined will lead to complex behavior. Our goal is to create a function that will take two hand matrices (defined below) and return the winning hand.

A hand matrix is 4x13 binary matrix showing the cards that are available for a poker player to use. This program will be expandable to use 5 card hands through 52 card hands! Suits of the cards are all equally ranked, so they only matter for determination of flushes (and straight flushes).

For each challenge, you should feel free to reuse your solutions from prior challenges in the series. To break this problem into smaller pieces, I am likely making architectural choices that are sub-optimal for speed. This is being done as an exercise in coding. The larger goal of this project can likely be done in a much faster, but more obscure way.

--------

Select the best hand using the definitions from earlier in this series.

out.hm{1} = cards used from the first hand matrix; out.hm{2} = cards used from the second hand matrix; out.winner = 1,2 or zero for a tie;

Standard poker ranks apply: Straight flush is best, high card is worst, with many gradations within each rank.

23 correct solutions
31 incorrect solutions

Last solution submitted on Jan 18, 2016

3 players like this problem

1 Comment

Albert Yam
on 29 Feb 2012

Should work for :
hm1=[1 0 0 0 0 0 0 0 0 0 0 0 1;1 0 0 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0 0 0];
hm2=[1 0 0 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0 0 0;1 0 0 0 0 0 0 0 0 0 0 0 1];

1 Comment

Albert Yam
on 29 Feb 2012

Should work for Alfonso's cases.

1 Comment

Albert Yam
on 29 Feb 2012

I did it!

9 Comments