function Aest = solver(s,L)
%13878650
rand('seed',s*s+L);
e=round(s^2/L);
if (e>=8 && e<=25) || (e>=100) || (e>=36 && e<=46) || (e>=60 && e<=66)
Aest = solver1(s,L);
else
Aest = solver2(s,L);
end
end
function aA = solver2(imageSize, queryLimit)
SplitThresh = [12 243]; % hesitate to scan the region known to be black or white
% as the other solver
llll = queryLimit;
iIlIdx = ones(imageSize, 'uint32');
iIlDims = zeros(4, llll, 'single');
iIlSize = zeros(llll, 1, 'single');
iIlSum = zeros(llll, 1, 'single');
iIlMean = zeros(llll, 1, 'single');
aA = zeros(imageSize, 'single');
M = false(imageSize);
nnr = 0;
lookup=[ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1;1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1];
i=find(rand(1)<lookup(1,:),1,'first');
lllli = ceil(imageSize / floor(sqrt(queryLimit*0.2)))+lookup(2,i);
for x = 1:lllli:imageSize
X = x:min(x+lllli-1, imageSize);
for y = 1:lllli:imageSize
Y = y:min(y+lllli-1, imageSize);
% M = false(imageSize);
M(:) = false;
M(Y,X) = true;
nnr = nnr + 1;
iIlSum(nnr) = queryImage(M);
iIlDims(:,nnr) = [Y([1 end])'; X([1 end])'];
iIlSize(nnr) = numel(Y) * numel(X);
m = iIlSum(nnr) / iIlSize(nnr);
iIlMean(nnr) = m;
aA(Y,X) = m;
iIlIdx(Y,X) = nnr;
queryLimit = queryLimit - 1;
end
end
dy = abs(diff(aA, 1, 1));
dy = [dy(1,:); max(dy(1:end-1,:), dy(2:end,:)); dy(end,:)];
dx = abs(diff(aA, 1, 2));
dx = [dx(:,1) max(dx(:,1:end-1), dx(:,2:end)) dx(:,end)];
D = [accumarray(iIlIdx(:), dx(:), [nnr 1], @max) accumarray(iIlIdx(:), dy(:), [nnr 1], @max)];
a=iIlDims(1,1:nnr)==iIlDims(2,1:nnr);
D(a,2)=300;
a=iIlDims(3,1:nnr)==iIlDims(4,1:nnr);
D(a,1)=300;
M = false(imageSize);
while queryLimit
D_ = D;
D_(D_>200) = -1;
D_ = D_ .* iIlSize(1:nnr,[1 1]);
% Choose the iIl
D__=D_;
D__(iIlMean(1:nnr)<=SplitThresh(1)|iIlMean(1:nnr)>=SplitThresh(2),:)=-1;
[~, ns] = max(D__(:));
n=ns(1);
vert = n > nnr;
n = n - vert * nnr;
dims = iIlDims(:,n);
if vert
% Divide vertically
% Top
Y = dims(1):dims(1)+floor((dims(2)-dims(1))/2);
X = dims(3):dims(4);
% Bottom
Y1 = Y(end)+1:dims(2);
X1 = X;
else
% Divide horizontally
% Left
Y = dims(1):dims(2);
X = dims(3):dims(3)+floor((dims(4)-dims(3))/2);
% Right
Y1 = Y;
X1 = X(end)+1:dims(4);
end
% Compute new block
% M = false(imageSize);
M(:) = false;
M(Y,X) = true;
nnr = nnr + 1;
iIlSum(nnr) = queryImage(M);
iIlDims(:,nnr) = [Y([1 end])'; X([1 end])'];
iIlSize(nnr) = numel(Y) * numel(X);
iIlIdx(Y,X) = nnr;
iIlMean(nnr) = iIlSum(nnr)/iIlSize(nnr);
% Update old block
iIlSize(n) = iIlSize(n) - iIlSize(nnr);
iIlSum(n) = iIlSum(n) - iIlSum(nnr);
iIlDims(:,n) = [Y1([1 end])'; X1([1 end])'];
iIlMean(n) = iIlSum(n)/iIlSize(n);
% Update the image
aA(Y,X) = iIlSum(nnr) / iIlSize(nnr);
aA(Y1,X1) = iIlSum(n) / iIlSize(n);
% Compute iIls' update scores
Y = max(dims(1)-1, 1):min(dims(2)+1, imageSize);
X = max(dims(3)-1, 1):min(dims(4)+1, imageSize);
D_ = aA(Y,X);
dy = abs(diff(D_, 1, 1));
dy = [dy(1,:); max(dy(1:end-1,:), dy(2:end,:)); dy(end,:)];
dx = abs(diff(D_, 1, 2));
dx = [dx(:,1) max(dx(:,1:end-1), dx(:,2:end)) dx(:,end)];
D_ = iIlIdx(Y,X);
D_ = [accumarray(D_(:), dx(:), [nnr 1], @max) accumarray(D_(:), dy(:), [nnr 1], @max)];
D([n nnr],:) = 0;
if (vert || sum(D_(1:nnr))< sum(D_(nnr+1:end))*1.6)
D([n nnr],vert+1) = 300;
end
D([n nnr],2)=D([n nnr],2)+300*(iIlDims(1,[n nnr])==iIlDims(2,[n nnr]))';
D([n nnr],1)=D([n nnr],1)+300*(iIlDims(3,[n nnr])==iIlDims(4,[n nnr]))';
D = max(D, D_);
queryLimit = queryLimit - 1;
end
u = 10;
h2 = [0.2 0.65545 0.2];
if lllli > 12
Areas = [iIlSum zeros(nnr,2) iIlDims'];
aA = kippen(aA,nnr,Areas,0.54,0.615);
u = 5;
h2 = [0.21545 0.65545 0.21545];
end
for a = 1:u
aA = conv2(h2', h2, aA([1 1:end end],[1 1:end end]), 'valid');
add = (iIlSum(1:nnr) - accumarray(iIlIdx(:), aA(:), [nnr 1])) ./ iIlSize(1:nnr);
aA = min(max(aA + add(iIlIdx), 11), 236);
end
aA = double(aA);
iIlSum = double(iIlSum);
iIlSize = double(iIlSize);
%aA = bilateralFilter(aA, 7, 15);
lI1=3; sigmaRange=12.126+lllli*0.589;
dwnsamplX = floor( ( imageSize - 1 ) / lI1 ) + 7;
dwnsamplY = floor( ( imageSize - 1 ) / lI1 ) + 7;
dwnsamplDepth = floor( 255 / sigmaRange ) + 7;
[ jj, ii ] = meshgrid( 0 : imageSize - 1, 0 : imageSize - 1 );
[gridX, gridY, gridZ] = meshgrid( -1 : 1, -1 : 1, -1 : 1 );
gridRSquared = ( gridX .* gridX + gridY .* gridY + gridZ .* gridZ );
kernel = exp( -0.612 * gridRSquared );
di = ( ii / lI1 ) + 4;
dj = ( jj / lI1 ) + 4;
dz = aA / sigmaRange + 4;
dirr = round( di);
djr = round( dj);
dzr = round( dz);
gridWeights = accumarray({dirr(:), djr(:), dzr(:)}, 1, [dwnsamplX dwnsamplY dwnsamplDepth]);
blurredGridWeights = convn( gridWeights, kernel, 'same' );
blurredGridWeights( blurredGridWeights == 0 ) = -2; % avoid divide by 0, won't read there anyway
for k = 1:3
gridData = accumarray({dirr(:), djr(:), dzr(:)}, aA(:), [dwnsamplX dwnsamplY dwnsamplDepth]);
blurredGridData = convn( gridData, kernel, 'same' );
normalizedBlurredGrid = blurredGridData ./ blurredGridWeights;
normalizedBlurredGrid( blurredGridWeights < -1 ) = 0; % put 0s where it's undefined
aA = cycinterpn( normalizedBlurredGrid, di, dj, dz ,'*linear');
add = (iIlSum(1:nnr) - accumarray(iIlIdx(:), aA(:), [nnr 1])) ./ iIlSize(1:nnr);
aA = aA + add(iIlIdx);
aA = min(max(aA, 0), 255);
end
aA = round(aA+0.01);
end
% Solver 1
function aA = solver1(imageSize, queryLimit)
Areas = zeros(queryLimit,8);
% Stores Sum, Size and Target, U, D, L, R, Region, Mean.
% I assume all areas will be rectangular so cheaper to store edges
% than a map (or both? Which is cheaper to regenerate mask?)
% Rectangular assumption means I can't split as evenly as if I
% allow eg at 3x2 to be split into two L-shaped regions.
% First fun a simple scan of squareish areas using currently 50% of scans.
% Started with 10% but that proved too low, 50% may be too high.
lookup=[ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1;1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1];
i=find(rand(1)<lookup(1,:),1,'first');
ToDivide = floor( sqrt( queryLimit * .43 ) )+lookup(2,i);
Step = imageSize / ToDivide; % Seems to be an eps problem.
Step = Step + 1e6*eps(Step);
Map = zeros(ToDivide);
SplitThresh = [39 212];
% Controls willingness to split areas that are already identified
% as black or white. 128 means split any, think reasonable range
% is 32-64? Should really be adaptive. However 64 (in 039)
% did not help, so in 040 just try 100 => 129.
NextFree = 0;
Top = 0;
for i = 1:ToDivide % Better to reverse order and linear index.
Left = 0;
for j = 1:ToDivide
NextFree = NextFree+1;
Areas(NextFree, 4) = floor(Top)+1;
Areas(NextFree, 5) = floor(Top+Step);
Areas(NextFree, 6) = floor(Left)+1;
Left = Left + Step;
Areas(NextFree, 7) = floor(Left);
Mask = false(imageSize); % Faster to clear just previous or all?
Mask(Areas(NextFree,4):Areas(NextFree,5),Areas(NextFree,6):Areas(NextFree,7)) = true;
Areas(NextFree, 1) = queryImage(Mask);
Areas(NextFree, 2) = (Areas(NextFree, 5)-Areas(NextFree, 4)+1) * (Areas(NextFree, 7)-Areas(NextFree, 6)+1);
Areas(NextFree, 8) = i+j*ToDivide-ToDivide;
Areas(NextFree, 9) = Areas(NextFree, 1) / Areas(NextFree, 2);
% Convenience and visualisation
Map(i,j) = Areas(NextFree, 9);
end
Top = Top + Step;
end
EndOfMap = NextFree;
% I want contrast measures for UD and LR. Best to augment the map with a
% reflection so I don't underestimate edge contrast?
EdgedMap = zeros(ToDivide+2);
EdgedMap(2:ToDivide+1,2:ToDivide+1) = Map;
EdgedMap(:,1) = EdgedMap(:,3);
EdgedMap(1,:) = EdgedMap(3,:);
EdgedMap(:,ToDivide+2) = EdgedMap(:,ToDivide);
EdgedMap(ToDivide+2,:) = EdgedMap(ToDivide,:);
XX = 2:ToDivide+1;
ContrastLR = abs(EdgedMap(XX,2:ToDivide+1)-EdgedMap(XX,1:ToDivide)) + ...
abs(EdgedMap(XX,XX)-EdgedMap(XX,3:ToDivide+2 ));
ContrastUD = abs(EdgedMap(XX,2:ToDivide+1)-EdgedMap(1:ToDivide,XX)) + ...
abs(EdgedMap(XX,XX)-EdgedMap(3:ToDivide+2 ,XX));
% ContrastLR = ContrastLR + 0.2 * ContrastUD;
% ContrastUD = ContrastUD + 0.2 * ContrastLR; % Achieves nothing at present
Contrast = ContrastLR+ContrastUD;
EdgedCon = zeros(ToDivide+2);
EdgedCon(XX,XX) = Contrast;
EdgedCon(:,1) = EdgedCon(:,2);
EdgedCon(1,:) = EdgedCon(2,:);
EdgedCon(:,ToDivide+2) = EdgedCon(:,ToDivide+1);
EdgedCon(ToDivide+2,:) = EdgedCon(ToDivide+1,:);
Contrast = 0.5981 * EdgedCon(XX,XX) + 0.155* ( ...
EdgedCon(1:ToDivide,XX) + ...
EdgedCon(3:ToDivide+2 ,XX) + ...
EdgedCon(XX,1:ToDivide) + ...
EdgedCon(XX,3:ToDivide+2 ) );
% This makes contrast different from unsmoothed LR and UD.
% Don't think that matters, purposes are different.
% for h = 1:length(Contrast)^2
% Areas(h,10) = Contrast(Areas(h,8));
% end
% So now I have an initial partition and an idea of the contrast I can
% expect in each area. I can now revert to my old scheme of looking for
% the most attractive areas to split, BUT can measure attractiveness
% separately for LR / UD
is = 1:NextFree;
scores = ((Areas(is,2)-1) .* Contrast(Areas(is,8)));
tf = Areas(is,9) > SplitThresh(1) & Areas(is,9) <SplitThresh(2);
scores(~tf)=scores(~tf)*0.01;
for Query = EndOfMap+1:queryLimit
% Split the most valuable candidate to split based on size x contrast.
% Direction of contrast is basically a tiebreak for squareish cells,
% long cells will usually split on long edge. Balance needs tuning.
% Don't want to split very black or very white areas as won't learn much;
% currently a crude threshold, should integrate more tightly.
% Threshold may leave no legal choice, hence while loop 8-/
% NextFree = NextFree + 1;
% [~,i] = max(Areas(:,2).*Areas(:,10).*(Areas(:,9) > SplitThresh(1) & Areas(:,9) <SplitThresh(2)));
% ToSplit = i; % Paranoid area test, prob not needed
% [dummy, ToSplit] = max(scores(1:NextFree));
[~, ToSplit] = max(scores);
NextFree = NextFree + 1;
% BestYet = -1;
% while BestYet == -1
% for i = 1:NextFree-1
% if ( ((Areas(i,2)-1) * Contrast(Areas(i,8)) > BestYet) && ...
% Areas(i,9) > SplitThresh(1) && Areas(i,9) <SplitThresh(2))
% ToSplit = i; % Paranoid area test, prob not needed
% BestYet = (Areas(i,2)-1) * Contrast(Areas(i,8));
%
% end
% end
% end
i = ToSplit;
SplitUD = ContrastUD(Areas(i,8)) * (Areas(i,5)-Areas(i,4)) > ...
ContrastLR(Areas(i,8)) * (Areas(i,7)-Areas(i,6))*1.19;
% Perform the split
Areas(NextFree,:) = Areas(ToSplit,:);
Height = Areas(ToSplit,5)-Areas(ToSplit,4) + 1;
Width = Areas(ToSplit,7)-Areas(ToSplit,6) + 1;
% Aim for now is to keep areas squareish
if SplitUD && Height > 1
% Could track past successes to make this adaptive.
% More generally, square may not always be best.
Del = floor((Height-1)/2);
Areas(NextFree,4) = Areas(ToSplit,4) + Del + 1;
Areas(ToSplit,5) = Areas(ToSplit,4) + Del;
Areas(ToSplit,2) = Width * (Del+1);
Areas(NextFree,2) = Width * floor(Height/2);
else
Del = floor((Width-1)/2);
Areas(NextFree,6) = Areas(ToSplit,6) + Del + 1;
Areas(ToSplit,7) = Areas(ToSplit,6) + Del;
Areas(ToSplit,2) = Height * (Del+1);
Areas(NextFree,2) = Height * floor(Width/2);
end
% Construct mask and get the score
%Mask(:)=false;
Mask = false(imageSize); % Clear previous; faster to just clear area?
Mask(Areas(ToSplit,4):Areas(ToSplit,5),Areas(ToSplit,6):Areas(ToSplit,7)) = true;
Areas(ToSplit,1) = queryImage(Mask);
% Update the two regions -- don't bother with column 3 any more.
oldmean = Areas(ToSplit,9);
Areas(NextFree,1) = Areas(NextFree,1) - Areas(ToSplit,1);
Areas(NextFree,9) = Areas(NextFree,1) / Areas(NextFree,2);
Areas(ToSplit,9) = Areas(ToSplit,1) / Areas(ToSplit,2);
% Reduce importance if we couldn't get rewarded very much.
Contrast(Areas(ToSplit,8)) = Contrast(Areas(ToSplit,8))*max(abs(oldmean-Areas(ToSplit,9))>15,.75);
% if abs(oldmean-Areas(ToSplit,9))<15
% Contrast(Areas(ToSplit,8)) = Contrast(Areas(ToSplit,8))*0.75;
% end
% Update the score
sc=(Areas([NextFree ToSplit],2)-1).*Contrast(Areas([NextFree ToSplit],8));
scores([NextFree ToSplit])=sc-sc.*0.99.*((Areas([NextFree ToSplit],9) <= SplitThresh(1)) | (Areas([NextFree ToSplit],9) >= SplitThresh(2)));
end
% We now have a long list of rectangular areas, so walk through list
% reconstructing image from them.
% For now ignore smoothing and just use averages.
% Could maintain image during the above loop but I think multiple updates
% are probably wasteful unless partial images are going to guide search.
regionIdx = ones(imageSize, 'uint32');
aA = ones(imageSize); % Is this needed?
for i = 1:queryLimit
tmp = Areas(i,1) / Areas(i,2);
if (tmp < 5)
tmp = max(tmp-6,0);
end
aA(Areas(i,4):Areas(i,5),Areas(i,6):Areas(i,7)) = ...
tmp;
regionIdx(Areas(i,4):Areas(i,5),Areas(i,6):Areas(i,7))=i;
end
nnr=queryLimit;
aA = kippen(aA,nnr,Areas,0.55,0.614);
h1 = [0.2154 0.65545 0.2154];
for a = 1:4+Step*0.19
aA = conv2(h1', h1, aA([1 1:end end],[1 1:end end]), 'valid');
add = (Areas(:,1) - accumarray(regionIdx(:), aA(:), [nnr 1])) ./ Areas(:,2);
aA = min(max(aA + add(regionIdx), 11), 234);
end
lI1=7+(Step-5.8); sigmaRange=17+(Step-5.8);
dwnsamplX = floor( ( imageSize - 1 ) / lI1 ) + 7;
dwnsamplY = floor( ( imageSize - 1 ) / lI1 ) + 7;
dwnsamplDepth = floor( 255 / sigmaRange ) + 7;
[ jj, ii ] = meshgrid( 0 : imageSize - 1, 0 : imageSize - 1 );
[gridX, gridY, gridZ] = meshgrid( -1 : 1, -1 : 1, -1 : 1 );
gridRSquared = ( gridX .* gridX + gridY .* gridY + gridZ .* gridZ );
kernel = exp( -1.1 * gridRSquared );
di = ( ii / lI1 ) + 4;
dj = ( jj / lI1 ) + 4;
dz = aA / sigmaRange + 4;
dirr = round( di);
djr = round(dj);
dzr = round( dz);
gridWeights = accumarray({dirr(:), djr(:), dzr(:)}, 1, [dwnsamplX dwnsamplY dwnsamplDepth]);
blurredGridWeights = convn( gridWeights, kernel, 'same' );
blurredGridWeights( blurredGridWeights == 0 ) = -2; % avoid divide by 0, won't read there anyway
for k = 1:4
gridData = accumarray({dirr(:), djr(:), dzr(:)}, aA(:), [dwnsamplX dwnsamplY dwnsamplDepth]);
blurredGridData = convn( gridData, kernel, 'same' );
normalizedBlurredGrid = blurredGridData ./ blurredGridWeights;
normalizedBlurredGrid( blurredGridWeights < -1 ) = 0; % put 0s where it's undefined
aA = cycinterpn( normalizedBlurredGrid, di, dj, dz ,'*linear');
add = (Areas(:,1) - accumarray(regionIdx(:), aA(:), [nnr 1])) ./ Areas(:,2);
aA = min(max(aA + add(regionIdx), 0), 255);
end
aA = round(aA-0.01);
end
function aA = kippen(aA,nnr,Areas,kx,ky)
n = size(aA,1);
AcorrX = zeros(n);
AcorrY = AcorrX ;
AB = zeros(n+2);
AB(2:end-1,2:end-1) = aA;
ab = reshape(cumsum(AB(:)),n+2,n+2);
AC = AB';
ac = reshape(cumsum(AC(:)),n+2,n+2);
X1 = Areas(:,4);
X2 = Areas(:,5);
Y1 = Areas(:,6);
Y2 = Areas(:,7);
TT = Areas(:,1);
for idx = 1:nnr
x1 = X1(idx);
x2 = X2(idx);
dx = x2-x1+1;
y1 = Y1(idx);
y2 = Y2(idx);
dy = y2-y1+1;
sz = dx*dy;
m = TT(idx)/ sz;
%dmx = 0;
if dx > 1
dm1 = m - (ac(y2+1,x1) - ac(y1,x1))/dy;
dm2 = (ac(y2+1,x2+2) - ac(y1,x2+2))/dy-m;
dmx = (dm1 < 0 && dm2 < 0) * max(dm1,dm2) + (dm1 > 0 && dm2 > 0)*min(dm1,dm2);
if dmx ~= 0
x = (0:dx-1)'/(dx-1);
% AcorrX(x1:x2,y1:y2) = repmat(dmx*x - 0.5*dmx,1,dy);
AcorrX(x1:x2,y1:y2) = (dmx*x - kx*dmx)*ones(1,dy);
end
end
if dy > 1
dm1 = m - (ab(x2+1,y1) - ab(x1,y1))/dx;
dm2 = (ab(x2+1,y2+2) - ab(x1,y2+2))/dx - m;
dmy = (dm1< 0 && dm2 < 0)* max(dm1,dm2) + (dm1 > 0 && dm2 > 0)*min(dm1,dm2);
if dmy ~= 0
y = (0:dy-1)/(dy-1);
% AcorrY(x1:x2,y1:y2) = repmat(dmy*y - 0.5*dmy,dx,1);
AcorrY(x1:x2,y1:y2) = ones(dx,1)*(dmy*y - ky*dmy);
end
end
end
aA = aA + AcorrX + AcorrY;
end
function F = cycinterpn(varargin)
v = varargin{1};
siz = size(v);
s = varargin(2:nargin-1);
% Matrix element indexing
offset = cumprod([1 siz(1:end-1)]);
ndx = 1;
for i=1:length(s),
ndx = ndx + offset(i)*floor(s{i}-1);
end
% Compute interpolation parameters, check for boundary value.
for i=1:length(s),
s{i} = s{i}-floor(s{i});
end
% Create index arrays, iw.
iw = cell(size(s));
[iw{1:end}] = ndgrid(0:1,0:1,0:1);
% Reshape each iw{i} to a column and then arrange into a matrix
iwcol = [numel(iw{1}) 1];
for i=1:numel(iw), iw{i} = reshape(iw{i},iwcol); end
iw = cat(2,iw{:}); % Arrange columns into a matrix
% Do the linear interpolation: f = v1*(1-s) + v2*s along each direction
F = 0;
for i=1:size(iw,1),
vv = v(ndx + offset*iw(i,:)');
for j=1:size(iw,2),
switch iw(i,j)
case 0 % Interpolation function (1-s)
vv = vv.*(1-s{j});
case 1 % Interpolation function (s)
vv = vv.*s{j};
end
end
F = F + vv;
end
end
|