# Diffing "Munster" and "Cheeeese"

 Title: Munster Cheeeese Author: Raphaël Candelier Raphaël Candelier Submitted: 2012-11-07 14:05:25 UTC 2012-11-07 15:19:48 UTC Status: Failed Passed Score: 0.0 1071.79 Result: Failed (execution): Undefined function ''squareform'' for input arguments of type ''double''. 982 (cyc: 9, node: 1571) CPU Time: 0.0 53.554 Code: ```function xyOut = solver(a, xyIn, wts) % In code we trust N = length(a); tmp = squareform(pdist(xyIn)); tmp = pdist(xyIn); W = max(tmp(:))*sum(wts); nbin = 15; nbin = 10; xtra = 10; diag(sum(a)); [V,~] = eig(ans-a, ans); for ss=1:3 [c{ss} c{ss+3}] = solver_1(a, ss+1, N, V+rand(size(V))/25); end c{7} = solver_2(xyIn, N, V(:,2:3),0); [p1,p2] = find(triu(a,1)); [pickr,pickc] = find(tril(true(nnz(triu(a,1))),-1)); parfor ss=1:7 NN(ss) = gradeIt(p1,p2,pickr,pickc,c{ss}); end [~, best] = min(NN); tmp = c{best}; xy = bsxfun(@minus, tmp, round(wts*(tmp-xyIn)./sum(wts))); % --- Slipknot m1 = min(xy,[], 1); m2 = max(xy,[], 1); xbin = unique(round(linspace(m1(1)-xtra, m2(1)+xtra, nbin))); ybin = unique(round(linspace(m1(2)-xtra, m2(2)+xtra, nbin))); [Y, X] = meshgrid(ybin, xbin); p1i = randperm(min(N,xtra)); for i = 1:N D = sqrt((xy(i,1)-X).^2 + (xy(i,2)-Y).^2); nei = find(a(i,:)); I = p1~=i & p2~=i; v = funknots(xy, xy(i,1), xy(i,2), nei, p1(I), p2(I)); if v D = sqrt((xy(i,1)-X).^2 + (xy(i,2)-Y).^2); nei = find(a(i,:)); I = p1~=i & p2~=i; p = [p1i (max(p1i)+1):N]; v = knots(xy, xy(i,1), xy(i,2), nei, p1(I), p2(I)); if v K = knots(xy, X, Y, nei, p1(I), p2(I)); K = funknots(xy, X, Y, nei, p1(I), p2(I)); M = K+D*wts(i)/W; [m, mi] = min(M(:)); if m0.002+ss*5.1e-4); sum((xyOut(i,:)-xyOut(j,:)).^2,2); k=find(ans>(3.15 + ss*0.102)*mean(ans)); if isempty(k), break; end a(i(k)+N*(j(k)-1))=0.002+ss*5.1e-4; end xyOutH=xyOut; single_idx = find(sum(a)==1); [singles_link, ~] = find(a(:,single_idx)==1); xyOut(single_idx,:)=xyOut(singles_link,:); for zsingle=1:2 for zsingle=1:2 xyOut0=sqrt(N)*detrend(xyOut,'constant')*diag(1./std(xyOut,1,1)); k=5; [sxyOut0,idxequal]=sortrows(round(15*xyOut0)); idxequal=idxequal(all(~diff(sxyOut0,1,1),2)); xyOut=round(xyOut0); while size(unique(xyOut,'rows'),1)~=N k=k*(1.0+ss*0.055); xyOut=xyOut0*k; xyOut(idxequal,:)=(xyOut0(idxequal,:)+randn(numel(idxequal),2)/(9+ss))*k; xyOut=round(xyOut); end if zsingle==1 xyOut1=xyOut; xyOut=xyOutH; end end end end function xyOut = solver_2(xyIn, N, V,xyOut) mult = norm(max(xyIn)-min(xyIn))/norm(max(V)-min(V)); while size(unique(xyOut,'rows'),1)= 0; end function K = knots(xy, X, Y, Lb, Lc, Ld) function K = funknots(xy, X, Y, Lb, Lc, Ld) % Knots for nuts nb = numel(Lb); nc = numel(Lc); Ax = repmat(X, [1 1 nb nc]); Ay = repmat(Y, [1 1 nb nc]); Bx = repmat(permute(xy(Lb,1), [2 3 1]), [size(X) 1 nc]); By = repmat(permute(xy(Lb,2), [2 3 1]), [size(X) 1 nc]); Cx = repmat(permute(xy(Lc,1), [2 3 4 1]), [size(X) nb 1]); Cy = repmat(permute(xy(Lc,2), [2 3 4 1]), [size(X) nb 1]); Dx = repmat(permute(xy(Ld,1), [2 3 4 1]), [size(X) nb 1]); Dy = repmat(permute(xy(Ld,2), [2 3 4 1]), [size(X) nb 1]); r = ((Ay-Cy).*(Dx-Cx)-(Ax-Cx).*(Dy-Cy))./((Bx-Ax).*(Dy-Cy) - (By-Ay).*(Dx-Cx)); s = ((Ay-Cy).*(Bx-Ax)-(Ax-Cx).*(By-Ay))./((Bx-Ax).*(Dy-Cy) - (By-Ay).*(Dx-Cx)); bx = permute(xy(Lb,1), [2 3 1]); by = permute(xy(Lb,2), [2 3 1]); cx = permute(xy(Lc,1), [2 3 4 1]); cy = permute(xy(Lc,2), [2 3 4 1]); dx = permute(xy(Ld,1), [2 3 4 1]); dy = permute(xy(Ld,2), [2 3 4 1]); ax_cx = bsxfun(@minus, X, cx); ay_cy = bsxfun(@minus, Y, cy); bx_ax = bsxfun(@minus, bx, X); by_ay = bsxfun(@minus, by, Y); dx_cx = bsxfun(@minus, dx, cx); dy_cy = bsxfun(@minus, dy, cy); nr = bsxfun(@minus, bsxfun(@times,ay_cy,dx_cx), bsxfun(@times,ax_cx,dy_cy)); ns = bsxfun(@minus, bsxfun(@times,ay_cy,bx_ax), bsxfun(@times,ax_cx,by_ay)); dn = bsxfun(@minus, bsxfun(@times,bx_ax,dy_cy), bsxfun(@times,by_ay,dx_cx)); r = bsxfun(@rdivide, nr, dn); s = bsxfun(@rdivide, ns, dn); K = sum(sum(r>=0 & r<1 & s>=0 & s<=1, 3), 4); end function D = pdist(X) N = size(X,1); D = NaN(N*(N-1)/2,1); for i = 1:N-1 D((i-1)*(N-i/2)+1:i*(N-(i+1)/2)) = (X(i,1)-X(i+1:end,1)).^2 + (X(i,1)-X(i+1:end,1)).^2; end D = sqrt(D); end```