2012-11-07 16:00:00 UTC

# Thnakless jiggle quicker

Status: Passed
Results: 1302 (cyc: 7, node: 1073)
CPU Time: 45.537
Score: 1350.6
Submitted at: 2012-11-04 21:29:24 UTC
Scored at: 2012-11-04 21:50:31 UTC

Current Rank: 760th (Highest: 1st )
Based on: Thankless Push 25/30 (diff)
Basis for: square (diff)
Basis for: Jiggle Optimize (diff)
Basis for: The Little Monkey (diff)
...and 5 others.

Code
function xyOut = solver(a, xyIn, wts)
deg=diag(sum(a));
[V,~]=eig(deg-a,deg);
N = length(a);
A = triu(a,1);
for ss=1:3
[xy{ss} xy{ss+3}] = solver_alfonsoz (a, xyIn , wts, ss+1, N, V+rand(size(V))/25); % (Biswas)
end
[xy{7} xy{8}] = solver_alfonsoz (a, xyIn , wts, 1, N, V);
xy{9} = solver_hannes(xyIn, N, V(:,2:3));
[ZBest,best] = min(NN);
xyOut = xy{best};

for jiggle=2:min(10,N)
xyOutJ=xyOut;
idx=jiggle:jiggle:2*N;

xyOutJ(idx)=xyOut(idx)+1;
xyOut=xyOutJ; % Use jiggle enhanced for more jiggling
break % take Knot and run
end

xyOutJ(idx)=xyOut(idx)-1;
xyOut=xyOutJ; % Use jiggle enhanced for more jiggling
break % take knot and run
end

end

end

function [xyOut xyOut1] = solver_alfonsoz(a, xyIn, wts, ss, N, V)
randn('seed',ss);
xyOut=V(:,2:3);

for ncut=1:2
Mbeta=((1-ss/15)*eye(N)+(ss/15)*bsxfun(@rdivide,a+eye(N),sum(a,2)+1))^10;
for n1=1:(117+ss)
xyOut=Mbeta*xyOut;
xc = bsxfun(@minus,xyOut,sum(xyOut)/N);
cov_xyOut = (xc'*xc)/N;
[c1,D]=svd(cov_xyOut);
xyOut=xc*c1*diag(1./sqrt(.1+diag(D)))*c1';
end
[i,j]=find(a>0.0075+ss*5.1e-4);
dd=sum((xyOut(i,:)-xyOut(j,:)).^2,2);
k=find(dd>(3.15 + ss*0.102)*mean(dd));
if isempty(k), break; end
a(i(k)+N*(j(k)-1))=0.0075+ss*5.1e-4;
end

xyOutH=xyOut;
single_idx = find(sum(a)==1);

for zsingle=1:2
xyOut0=sqrt(N)*detrend(xyOut,'constant')*diag(1./std(xyOut,1,1));
k=5;
[sxyOut0,idxequal]=sortrows(round(15*xyOut0)); % (Biswas)
idxequal=idxequal(all(~diff(sxyOut0,1,1),2));
xyOut=round(xyOut0);
while size(unique(xyOut,'rows'),1)~=N
k=k*(1.0+ss*0.055);
xyOut=xyOut0*k;
xyOut(idxequal,:)=(xyOut0(idxequal,:)+randn(numel(idxequal),2)/(9+ss))*k;
xyOut=round(xyOut);
end
xyOut = bsxfun(@minus,xyOut,round(wts*(xyOut-xyIn)./sum(wts)));
if zsingle==1
xyOut1=xyOut;
xyOut=xyOutH;
end
end
end

function xyOut = solver_hannes(xyIn, N, V)
mult    = norm(max(xyIn)-min(xyIn))/norm(max(V)-min(V));
xyOut   = [];
while size(unique(xyOut,'rows'),1)<N
xyOut       = round(V*mult);
[~,i]       = unique(xyOut,'rows');
m           = setdiff(1:N,i);
xyOut(m,:)  = xyOut(m,:) + round(rand(length(m),2))*2 - 1;
mult        = mult*1.5;
end
end

nLines = nnz(A);
[p1i,p2i] = find(A);
pick = tril(true(nLines),-1);
for nt=1:2
x1{nt} = pickCoordinates(XYnew(p1i,nt) ,1,nLines,pick);
x3{nt} = pickCoordinates(XYnew(p1i,nt)',nLines,1,pick);
x2{nt} = pickCoordinates(XYnew(p2i,nt) ,1,nLines,pick);
x4{nt} = pickCoordinates(XYnew(p2i,nt)',nLines,1,pick);
end
S = sum(areIntersecting(x1{1},x1{2},x2{1},x2{2},x3{1},x3{2},x4{1},x4{2}));
end

function bool = areIntersecting(x1,y1,x2,y2,x3,y3,x4,y4)
a = x1.*y2 - y1.*x2;
b = x3.*y4 - y3.*x4;
Px_n = a.*(x3 - x4) - b.*(x1 - x2);
Py_n = a.*(y3 - y4) - b.*(y1 - y2);
Pxy_d = (x1 - x2).*(y3 - y4) - (y1 - y2).*(x3 - x4);
bool = isPointBetween(x1, x2, Px_n, Pxy_d) & ...
isPointBetween(y1, y2, Py_n, Pxy_d) & ...
isPointBetween(x3, x4, Px_n, Pxy_d) & ...
isPointBetween(y3, y4, Py_n, Pxy_d);
end

function x = pickCoordinates(xy,n,m,pick)
x = repmat(xy,n,m);
x = x(pick);
end

function bool = isPointBetween(pt1, pt2, num, den)

bool = pt1.*den <= num & num <= pt2.*den | ...
pt1.*den >= num & num >= pt2.*den;
end