function xyOut = solver(a, xyIn, wts)
% In code we trust
N = length(a);
tmp = pdist(xyIn);
W = max(tmp(:))*sum(wts);
nbin = 10;
xtra = 10;
diag(sum(a));
[V,~] = eig(ans-a, ans);
for ss=1:3
[c{ss} c{ss+3}] = solver_1(a, ss+1, N, V+rand(size(V))/25);
end
c{7} = solver_2(xyIn, N, V(:,2:3),0);
[p1,p2] = find(triu(a,1));
[pickr,pickc] = find(tril(true(nnz(triu(a,1))),-1));
parfor ss=1:7
NN(ss) = gradeIt(p1,p2,pickr,pickc,c{ss});
end
[~, best] = min(NN);
tmp = c{best};
xy = bsxfun(@minus, tmp, round(wts*(tmp-xyIn)./sum(wts)));
% --- Slipknot
m1 = min(xy,[], 1);
m2 = max(xy,[], 1);
xbin = unique(round(linspace(m1(1)-xtra, m2(1)+xtra, nbin)));
ybin = unique(round(linspace(m1(2)-xtra, m2(2)+xtra, nbin)));
[Y, X] = meshgrid(ybin, xbin);
for i = 1:N
D = sqrt((xy(i,1)-X).^2 + (xy(i,2)-Y).^2);
nei = find(a(i,:));
I = p1~=i & p2~=i;
v = funknots(xy, xy(i,1), xy(i,2), nei, p1(I), p2(I));
if v
K = funknots(xy, X, Y, nei, p1(I), p2(I));
M = K+D*wts(i)/W;
[m, mi] = min(M(:));
if m<v
x0 = X(mi);
y0 = Y(mi);
if ismember([x0 y0], xy, 'rows')
for gs = 1:N
[X_, Y_] = meshgrid(x0+(-gs:gs), y0+(-gs:gs));
xy_ = [X_(:) Y_(:)];
xy_(ismember(xy_, xy, 'rows'),:) = NaN;
if any(~isnan(xy_(:,1)))
tmp = (x0-xy_(:,1)).^2+(y0-xy_(:,2)).^2;
tmp(isnan(tmp)) = Inf;
[~,mi] = min(tmp);
x0 = xy_(mi,1);
y0 = xy_(mi,2);
break;
end
end
end
xy(i,:) = [x0 y0];
end
end
end
xyOut = xy;
end
function [xyOut xyOut1] = solver_1(a, ss, N, V)
randn('seed',ss);
xyOut=V(:,2:3);
sN=sqrt(N);
for ncut=1:2
Mbeta=((1-ss/15)*eye(N)+(ss/15)*bsxfun(@rdivide,a+eye(N),sum(a,2)+1))^10;
for n1=1:(117+ss)
xyOut=Mbeta*xyOut;
xc = bsxfun(@minus,xyOut,sum(xyOut)/N);
[c1,D]=svd(xc');
xyOut=xc*c1*diag(sN./(.1+D([1 4])))*c1';
end
[i,j]=find(a>0.002+ss*5.1e-4);
sum((xyOut(i,:)-xyOut(j,:)).^2,2);
k=find(ans>(3.15 + ss*0.102)*mean(ans));
if isempty(k), break; end
a(i(k)+N*(j(k)-1))=0.002+ss*5.1e-4;
end
xyOutH=xyOut;
single_idx = find(sum(a)==1);
[singles_link, ~] = find(a(:,single_idx)==1);
xyOut(single_idx,:)=xyOut(singles_link,:);
for zsingle=1:2
xyOut0=sqrt(N)*detrend(xyOut,'constant')*diag(1./std(xyOut,1,1));
k=5;
[sxyOut0,idxequal]=sortrows(round(15*xyOut0));
idxequal=idxequal(all(~diff(sxyOut0,1,1),2));
xyOut=round(xyOut0);
while size(unique(xyOut,'rows'),1)~=N
k=k*(1.0+ss*0.055);
xyOut=xyOut0*k;
xyOut(idxequal,:)=(xyOut0(idxequal,:)+randn(numel(idxequal),2)/(9+ss))*k;
xyOut=round(xyOut);
end
if zsingle==1
xyOut1=xyOut;
xyOut=xyOutH;
end
end
end
function xyOut = solver_2(xyIn, N, V,xyOut)
mult = norm(max(xyIn)-min(xyIn))/norm(max(V)-min(V));
while size(unique(xyOut,'rows'),1)<N
xyOut = round(V*mult);
[~,i] = unique(xyOut,'rows');
m = setdiff(1:N,i);
xyOut(m,:) = xyOut(m,:) + randi([-1 1],length(m),2);
mult = mult*1.5;
end
end
function ans = gradeIt(p1i,p2i,pickr,pickc,XYnew)
X = [XYnew(p1i,:) XYnew(p2i,:)];
x1 = X(pickr,:);
x3 = X(pickc,:);
sum(areIntersecting(x1(:,1),x1(:,2),x1(:,3),x1(:,4),x3(:,1),x3(:,2),x3(:,3),x3(:,4)));
end
function ans = areIntersecting(x1,y1,x2,y2,x3,y3,x4,y4)
a = x1.*y2 - y1.*x2;
b = x3.*y4 - y3.*x4;
Px_n = a.*(x3 - x4) - b.*(x1 - x2);
Py_n = a.*(y3 - y4) - b.*(y1 - y2);
Pxy_d = (x1 - x2).*(y3 - y4) - (y1 - y2).*(x3 - x4);
isPointBetween(x1, x2, Px_n, Pxy_d) & ...
isPointBetween(y1, y2, Py_n, Pxy_d) & ...
isPointBetween(x3, x4, Px_n, Pxy_d) & ...
isPointBetween(y3, y4, Py_n, Pxy_d);
end
function ans = isPointBetween(pt1, pt2, num, den)
(pt1.*den - num).*(num - pt2.*den) >= 0;
end
function K = funknots(xy, X, Y, Lb, Lc, Ld)
% Knots for nuts
bx = permute(xy(Lb,1), [2 3 1]);
by = permute(xy(Lb,2), [2 3 1]);
cx = permute(xy(Lc,1), [2 3 4 1]);
cy = permute(xy(Lc,2), [2 3 4 1]);
dx = permute(xy(Ld,1), [2 3 4 1]);
dy = permute(xy(Ld,2), [2 3 4 1]);
ax_cx = bsxfun(@minus, X, cx);
ay_cy = bsxfun(@minus, Y, cy);
bx_ax = bsxfun(@minus, bx, X);
by_ay = bsxfun(@minus, by, Y);
dx_cx = bsxfun(@minus, dx, cx);
dy_cy = bsxfun(@minus, dy, cy);
nr = bsxfun(@minus, bsxfun(@times,ay_cy,dx_cx), bsxfun(@times,ax_cx,dy_cy));
ns = bsxfun(@minus, bsxfun(@times,ay_cy,bx_ax), bsxfun(@times,ax_cx,by_ay));
dn = bsxfun(@minus, bsxfun(@times,bx_ax,dy_cy), bsxfun(@times,by_ay,dx_cx));
r = bsxfun(@rdivide, nr, dn);
s = bsxfun(@rdivide, ns, dn);
K = sum(sum(r>=0 & r<1 & s>=0 & s<=1, 3), 4);
end
function D = pdist(X)
N = size(X,1);
D = NaN(N*(N-1)/2,1);
for i = 1:N-1
D((i-1)*(N-i/2)+1:i*(N-(i+1)/2)) = (X(i,1)-X(i+1:end,1)).^2 + (X(i,1)-X(i+1:end,1)).^2;
end
D = sqrt(D);
end
|