function R=q2dcm(q)
% Q2DCM(Q) converts quaternions into direction cosine matrices.
%
% The resultant DCM(s) will perform the same transformations as the
% quaternion(s) in Q, i.e.:
%
% R*v = qvxform(q, v)
%
% where R is the DCM, V is a vector, and Q is the quaternion. Note that
% for purposes of quaternion-vector multiplication, a vector is treated
% as a quaterion with a scalar element of zero.
%
% If the input, Q, is a vector of quaternions, the output, R, will be
% 3x3xN where input quaternion Q(k,:) corresponds to output DCM
% R(:,:,k).
%
% Note that the input Q will be processed by QNORM to ensure normality.
%
% See also DCM2Q, QNORM.
% Release: $Name: quaternions-1_3 $
% $Revision: 1.14 $
% $Date: 2009-07-24 19:14:44 $
% Copyright (c) 2000-2009, Jay A. St. Pierre. All rights reserved.
if nargin~=1
error('q2dcm() requires one input argument');
else
qtype=isq(q);
if ( qtype == 0 )
error(['Invalid input: must be a quaternion or a vector of' ...
' quaternions'])
end
end
% Make sure input is a column of quaternions
if( qtype==1 )
q=q.';
end
% Make sure quaternion is normalized to prevent skewed DCM
q=qnorm(q);
% Build quaternion element products
q1q1=q(:,1).*q(:,1);
q1q2=q(:,1).*q(:,2);
q1q3=q(:,1).*q(:,3);
q1q4=q(:,1).*q(:,4);
q2q2=q(:,2).*q(:,2);
q2q3=q(:,2).*q(:,3);
q2q4=q(:,2).*q(:,4);
q3q3=q(:,3).*q(:,3);
q3q4=q(:,3).*q(:,4);
q4q4=q(:,4).*q(:,4);
% Build DCM
R(1,1,:) = q1q1 - q2q2 - q3q3 + q4q4;
R(1,2,:) = 2*(q1q2 + q3q4);
R(1,3,:) = 2*(q1q3 - q2q4);
R(2,1,:) = 2*(q1q2 - q3q4);
R(2,2,:) = -q1q1 + q2q2 - q3q3 + q4q4;
R(2,3,:) = 2*(q2q3 + q1q4);
R(3,1,:) = 2*(q1q3 + q2q4);
R(3,2,:) = 2*(q2q3 - q1q4);
R(3,3,:) = -q1q1 - q2q2 + q3q3 + q4q4;