Contents
- Triangular area for global cartesian coordinates.
- Definite multi parameter parametric matrix [Nparametric]
- Definite multi parameter homogen matrix [Nhomogen]
- Homogen or parametric function integrate on triangular area
- Homogen integrate(1): Parametric function
- Parametric integrate(2):Homogen function
%__________________________________________________________________________ %|HOMOGEN INTEGRATE ON TRIANGULAR AREAS (A.Ö)27.01.2007 | %|_________________________________________________________________________| %|Integrate technique :Gamma function format | PARAMETRIC APPLICATION | %| :Beta function format | Symbolic toolbox | %|_____________________________________________|___________________________| %|FUNCTION | %|function [Integrate]=TRhomogenint(Cor,mainfunction,flag) | %| | %|Integrate: Tetrahedral volume homogen integrate value | %|Cor: Triangular element global cartesian node coordinates | %|mainfunction: | %| 1-Only multi parametric parameter polinom or function | %| FLAG=1 2-Multi parameter parametric matrix | %| FLAG=2 3-Homogen multi parameter function or matrix | %| | %|_____________________________________________________Matlab ver(7.1)_____| clc clear syms X Y Z real
Triangular area for global cartesian coordinates.
%[X] [Y] Cor=[1.00 1.00 %Node(1) 3.00 2.00 %Node(2) 2.00 3.00] %Node(3)
Cor =
1 1
3 2
2 3
Definite multi parameter parametric matrix [Nparametric]
%#7# Point-Gaussian integrate results Nparametric = [1 %3/2 (Exact!) X %3 (Exact!) X^2 %25/4 (Exact!) X*Y %49/8 (Exact!) X^3 %27/2 (Exact!) X^2*Y ]' %259/20 (Exact!)
Nparametric = [ 1, X, X^2, X*Y, X^3, X^2*Y]
Definite multi parameter homogen matrix [Nhomogen]
syms e1 e2 e3 real Nhomogen= [ e1*(-1+2*e1) e2*(-1+2*e2) e3*(-1+2*e3) (2*e1-1+2*e2+2*e3)*(e1-1+e2+e3) 4*e1*e2 4*e2*e3 4*e3*e1 -4*e1*(e1-1+e2+e3) -4*e2*(e1-1+e2+e3) -4*e3*(e1-1+e2+e3) ]
Nhomogen =
e1*(-1+2*e1)
e2*(-1+2*e2)
e3*(-1+2*e3)
(-1+2*e1+2*e2+2*e3)*(e1-1+e2+e3)
4*e1*e2
4*e2*e3
4*e3*e1
-4*e1*(e1-1+e2+e3)
-4*e2*(e1-1+e2+e3)
-4*e3*(e1-1+e2+e3)
Homogen or parametric function integrate on triangular area
syms t1 real px=Cor(:,1) ; py=Cor(:,2) ; %Triangular area %Area=1/2*abs(det([ 1 1 1 % X1 X2 X3 % Y1 Y2 Y3 ])); A=1/2*abs(det([ 1 1 1 px(1) px(2) px(3) py(1) py(2) py(3)])); %Cartesian axises are connecting homogen axises %X = e1*px(1) + e2*px(2) + e3*px(3) %Y = e1*py(1) + e2*py(2) + e3*py(3) %Z = e1*pz(1) + e2*pz(2) + e3*pz(3) %Homogen axises depends %e2=(1-e1)*t1 %e3=(1-e1-e2) => %e3=(1-e1-(1-e1)*t1) => %e3=(1-e1)*(1-t1) % homogen axis(1) e1 = e1 % homogen axis(2) e2 = (1-e1)*t1 % homogen axis(3) e3 = (1-e1)*(1-t1) Acon=subs(Nparametric ,{X,Y}, ... {e1*px(1) + e2*px(2) + e3*px(3), ... e1*py(1) + e2*py(2) + e3*py(3) }); %Parametric function transform Ahparametric = subs(Acon,{e2,e3},... {(1-e1)*t1,... (1-e1)*(1-t1) }); %Homogen function transform Ahhomogen = subs(Nhomogen , {e2,e3},... {(1-e1)*t1,... (1-e1)*(1-t1) });
Homogen integrate(1): Parametric function
%Chain-Rules on integration %Integra1=int(6*V*Ah*(1-e1)*(1-t1),e1,0,1); %Integra2=int(Integra1,t1,0,1); Integra1=int(int(2*A*Ahparametric*(1-e1),e1,0,1),t1,0,1); Integra1
Integra1 = [ 3/2, 3, 25/4, 49/8, 27/2, 259/20]
Parametric integrate(2):Homogen function
Integra2=int(int(2*A*Ahhomogen*(1-e1),e1,0,1),t1,0,1)'
Integra2 = [ 0, 0, 0, 0, 1/2, 1/2, 1/2, 0, 0, 0]
