No BSD License  

Highlights from
Gantry robot simulation

image thumbnail

Gantry robot simulation

by

 

11 Oct 2007 (Updated )

Supervisory and low level robot tracking control of a 5-bar or articulated gantry using desired posi

gantry_msfun_3color(t,x,u,flag, handles)
function [sys,x0,str,ts] = gantry_msfun_3color(t,x,u,flag, handles)
%SFUNTMPL General M-file S-function template
%   With M-file S-functions, you can define you own ordinary differential
%   equations (ODEs), discrete system equations, and/or just about
%   any type of algorithm to be used within a Simulink block diagram.
%
%   The general form of an M-File S-function syntax is:
%       [SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
%   What is returned by SFUNC at a given point in time, T, depends on the
%   value of the FLAG, the current state vector, X, and the current
%   input vector, U.
%
%   FLAG   RESULT             DESCRIPTION
%   -----  ------             --------------------------------------------
%   0      [SIZES,X0,STR,TS]  Initialization, return system sizes in SYS,
%                             initial state in X0, state ordering strings
%                             in STR, and sample times in TS.
%   1      DX                 Return continuous state derivatives in SYS.
%   2      DS                 Update discrete states SYS = X(n+1)
%   3      Y                  Return outputs in SYS.
%   4      TNEXT              Return next time hit for variable step sample
%                             time in SYS.
%   5                         Reserved for future (root finding).
%   9      []                 Termination, perform any cleanup SYS=[].
%
%
%   The state vectors, X and X0 consists of continuous states followed
%   by discrete states.
%
%   Optional parameters, P1,...,Pn can be provided to the S-function and
%   used during any FLAG operation.
%
%   When SFUNC is called with FLAG = 0, the following information
%   should be returned:
%
%      SYS(1) = Number of continuous states.
%      SYS(2) = Number of discrete states.
%      SYS(3) = Number of outputs.
%      SYS(4) = Number of inputs.
%               Any of the first four elements in SYS can be specified
%               as -1 indicating that they are dynamically sized. The
%               actual length for all other flags will be equal to the
%               length of the input, U.
%      SYS(5) = Reserved for root finding. Must be zero.
%      SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
%               has direct feedthrough if U is used during the FLAG=3
%               call. Setting this to 0 is akin to making a promise that
%               U will not be used during FLAG=3. If you break the promise
%               then unpredictable results will occur.
%      SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
%      X0     = Initial state conditions or [] if no states.
%
%      STR    = State ordering strings which is generally specified as [].
%
%      TS     = An m-by-2 matrix containing the sample time
%               (period, offset) information. Where m = number of sample
%               times. The ordering of the sample times must be:
%
%               TS = [0      0,      : Continuous sample time.
%                     0      1,      : Continuous, but fixed in minor step
%                                      sample time.
%                     PERIOD OFFSET, : Discrete sample time where
%                                      PERIOD > 0 & OFFSET < PERIOD.
%                     -2     0];     : Variable step discrete sample time
%                                      where FLAG=4 is used to get time of
%                                      next hit.
%
%               There can be more than one sample time providing
%               they are ordered such that they are monotonically
%               increasing. Only the needed sample times should be
%               specified in TS. When specifying than one
%               sample time, you must check for sample hits explicitly by
%               seeing if
%                  abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
%               is within a specified tolerance, generally 1e-8. This
%               tolerance is dependent upon your model's sampling times
%               and simulation time.
%
%               You can also specify that the sample time of the S-function
%               is inherited from the driving block. For functions which
%               change during minor steps, this is done by
%               specifying SYS(7) = 1 and TS = [-1 0]. For functions which
%               are held during minor steps, this is done by specifying
%               SYS(7) = 1 and TS = [-1 1].

%   Copyright 1990-2002 The MathWorks, Inc.
%   $Revision: 1.18 $

%
% The following outlines the general structure of an S-function.
%

persistent h
persistent tt

switch flag,

    
  %%%%%%%%%%%%%%%%%%
  % Initialization %
  %%%%%%%%%%%%%%%%%%
  case 0,
    [sys,x0,str,ts,h]=mdlInitializeSizes(handles);

  %%%%%%%%%%%%%%%
  % Derivatives %
  %%%%%%%%%%%%%%%
  case 1,
    sys=mdlDerivatives(t,x,u);

  %%%%%%%%%%
  % Update %
  %%%%%%%%%%
  case 2,
    sys=mdlUpdate(t,x,u);

  %%%%%%%%%%%
  % Outputs %
  %%%%%%%%%%%
  case 3,
    sys=mdlOutputs(t,x,u, handles, h);

  %%%%%%%%%%%%%%%%%%%%%%%
  % GetTimeOfNextVarHit %
  %%%%%%%%%%%%%%%%%%%%%%%
  case 4,
    sys=mdlGetTimeOfNextVarHit(t,x,u);

  %%%%%%%%%%%%%
  % Terminate %
  %%%%%%%%%%%%%
  case 9,
    sys=mdlTerminate(t,x,u);

  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    error(['Unhandled flag = ',num2str(flag)]);

end

% end sfuntmpl

%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,h]=mdlInitializeSizes(handles)
% video parameters
%exists separately in init and output in msfun, also in gantry init
videoRes=[240 320];
videoArea=[7.5 10]; %length of area video covers in m's
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded.  This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;

sizes.NumContStates  = 0;
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 0;
% *********************************** 3color
sizes.NumInputs      = videoRes(1)*videoRes(2)*3+6; % times 3 for color : 6+image vector size
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;   % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
x0  = [];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts  = [.1 0];

%
% jk added 011505
% temp(:,:,1)=zeros(307);
% temp(:,:,2)=zeros(307);
% temp(:,:,3)=zeros(307);
%h.image=image(temp, 'Parent', handles.axes1);




graymap=[0:1/255:1 ; 0:1/255:1 ; 0:1/255:1]';
set(handles.figure1,'Colormap', graymap)
temp(:,:,1)=zeros(videoRes(1:2));
% *********************************************** 3color
temp(:,:,2)=zeros(videoRes(1:2)); % for color
temp(:,:,3)=zeros(videoRes(1:2));
hold(handles.axes1,'off');
% changed 062805
h.image=imagesc([0 videoArea(2)],[0 videoArea(1)], temp, 'Parent', handles.axes1);  % use imagesc if color range never changes
%[0 videoArea(2)],[0 videoArea(1)], 

%set(handles.axes1, 'Visible', 'off')
hold(handles.axes1,'on');
h.des1=plot(handles.axes1, 0, 0, 'o', 'MarkerSize',12, 'MarkerEdgeColor','r','MarkerFaceColor','w');
h.des2=plot(handles.axes1, 0, 0, 'o', 'MarkerSize',6, 'MarkerEdgeColor','r','MarkerFaceColor','r');
h.act=plot(handles.axes1, 0, 0, 'o', 'MarkerSize',10, 'MarkerEdgeColor','k','MarkerFaceColor','g');
% changed 062805
axis(handles.axes1,'manual');
axis(handles.axes1,[0 videoArea(2) 0 videoArea(1)]);%[6.7 18.7 6.7 18.7]);  
%[0 320 0 240]
% for testing only 011905
%assignin('base','h',h);

% end mdlInitializeSizes

%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
function sys=mdlDerivatives(t,x,u)

sys = [];

% end mdlDerivatives

%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(t,x,u,handles,h)

%exists separately in init and output
videoRes=[240 320];
frameDataSize=videoRes(1)*videoRes(2);
% tic;
% ********************************* 3color
temp=zeros(videoRes(1),videoRes(2),3); % for color
temp(:,:,1)=reshape((u(7:6+frameDataSize)),videoRes(1),videoRes(2));  
% ********************************** 3color
temp(:,:,2)=reshape((u(7+frameDataSize:6+frameDataSize*2)),videoRes(1),videoRes(2));   % for color
temp(:,:,3)=reshape((u(7+frameDataSize*2:6+frameDataSize*3)),videoRes(1),videoRes(2));  

set(h.image, 'CData', temp);
% for testing only 062805
%assignin('base','temp',temp);

%tt=toc;
%mode_str=num2str(tt);

% temp=zeros(307,307,3);
% temp(:,:,1)=reshape(u(7:end),307,307);
% temp(:,:,2)=temp(:,:,1);
% temp(:,:,3)=temp(:,:,1);
% set(h.image, 'CData', temp);

u_new=u(1:4);
set(h.des1,'xdata',u_new(1));
set(h.des1,'ydata',u_new(2));
set(h.des2,'xdata',u_new(1));
set(h.des2,'ydata',u_new(2));
set(h.act,'xdata',u_new(3));
set(h.act,'ydata',u_new(4));


% Electromagnet on/off color
if u(5)>.5
    set(h.act,'MarkerFaceColor', [1 0 0])
else
    set(h.act,'MarkerFaceColor', [0 1 0])
end
% mode indicator
switch u(6)
    case 0
        mode_str='initializing';
    case 1
        mode_str='hold home position';    
    case 2
        mode_str='seeking target';    
    case 3
        mode_str='tracking target';    
    case 4
        mode_str='picked up object';    
    case 5
        mode_str='seeking home';    
    case 6
        mode_str='waiting for drop cmd';    
    case 7
        mode_str='hardware disabled';    
    case 8
        mode_str='controller & hw disabled';    
    otherwise
        mode_str='logic chart error';
end
set(handles.dynamic_plant_state,'String',mode_str);

sys = [];

% end mdlOutputs

%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block.  Note that the result is
% absolute time.  Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================
%
function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1;    %  Example, set the next hit to be one second later.
sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate

Contact us