No BSD License  

Highlights from
Analysis of suspension system using MATLAB, SIMULINK and Simscape

image thumbnail

Analysis of suspension system using MATLAB, SIMULINK and Simscape

by

kiran Jacob

 

22 Jan 2008 (Updated )

modelling of suspension sytem of a quarter car using MathWorks prducts

suspension_sys_MATLAB.m
%% Analysis and simulation of Passive suspension system using MATLAB 7.5
%% (R2207b)using State Spce equations

Mse=90; % Mass of seat
Ms=250;% Mass of sprung
Mu=40;% Mass of Unsprung
bs=2000; %Damping ratio for sprung mass
bse=3000;%Damping ratio for seat mass
Kt=125000;%Stiffness of Unsprung mass
Ks=28000;%Stiffness of sprung mass
Kse=8000;%Stiffness of seat mass
Zr=0.2;% road disturbance

%% State Space Equation

%Coefficient A
A=[0,1,0,0,0,0;-Kse/Mse,-bse/Mse,Kse/Mse,bse/Mse,0,0;0,0,0,1,0,0;Kse/Ms,bse/Ms,-Kse/Ms-Ks/Ms,-bse/Ms-bs/Ms,Ks/Ms,bs/Ms;0,0,0,0,0,1;...
0,0,Ks/Mu,bs/Mu,-Ks/Mu-Kt/Mu,-bs/Mu];

%%Coeiffcient B
B=[0;0;0;0;0;Kt/Mu];

%C coefficient of displacement analysis
C1=[1,0,0,0,0,0];
C2=[0,0,1,0,0,0];
C3=[0,0,0,0,1,0];

%C coefficient for velocity analysis

v1=[0,1,0,0,0,0];
v2=[0,0,0,1,0,0];
v3=[0,0,0,0,0,1];

% coefficeint D

D=[0];

%% Vertical Displacement response of the suspension system 

dse=ss(A,Zr*B,C1,D);%Seat output equation
ds=ss(A,Zr*B,C2,D);%sprung output equation
du=ss(A,Zr*B,C3,D);%Unsprung output equation

%% Vertical Velocity response of the suspension system  

vse=ss(A,Zr*B,v1,D);
vs=ss(A,Zr*B,v2,D);
vu=ss(A,Zr*B,v3,D);

%% Velocity and displacement response of seat

step(dse,vse)
axis([0 10 -1 1.5])
legend('Displacement','velocity');
title('Velocity and displacement response of seat')


%% Velocity and displacement response of Spung Mass
figure;
step(ds,vs)
axis([0 10 -1 2])
legend('Displacement','velocity');
title('Velocity and displacement response of Spung Mass')

%% Velocity and displacement response of Unspung Mass
figure;
step(du,vu)
axis([0 1 -2 7])
legend('Displacement','velocity');
title('Velocity and displacement response of UnSpung Mass')

Contact us