Description |
The function sinfap.m evaluates frequency, amplitude, phase and mean value of a uniformly sampled harmonic signal
x(t) = a.sin(2.pi.f.t + phi) + x_m
It uses a vector version of 3-point formulae derived by application of
Z-transform (see [1]) for finding amplitude and frequency of a signal.
If more than two output parameters are to be determined, all of them are optimized in the least squares sense by the function LMFnlsq.
Calls:
frq = sinfapm(x,fs); % Get only frequaency of sine-wave
[frq,amp] = sinfapm(x,fs); % Get frequency and amplitude
[frq,amp,phi] = sinfapm(x,fs); % Get frequency, amplitude and phase
[frq,amp,phi,ave] = sinfapm(x,fs); % ditto plus mean value
The set of more than two output parameters can be found by calling
[frq,amp,phi] = sinfapm(x,fs,Name_1,Val_1,Name_2,Val_2, ...);
[frq,amp,phi,ave] = sinfapm(x,fs,Name_1,Val_1,Name_2,Val_2, ...);
Input arguments:
x % vector of samples
fs % sampling frequency [Hz]
Name_i % name of the i-th optional parameter for optimization
Val_i % value of the i-th optional parameter (see function LMFnlsq)
Output arguments:
frq % frequency of x [Hz]
amp % amplitude of x
phi % phase in radians
Examples:
[f,a,phi,ave] = sinfapm([1.3633;-.2428;-0.9705;1.8130;-1.9631],10);
% f = 4.0000
% a = 2.0000
% phi = 0.7500
% ave = -2.2806e-005
[f,a,phi] = sinfapm([.707,1,.707,0],20,'Xtol',1e-4);
% f = 2.5001
% a = 0.9999
% phi = 0.7853 % pi/4 = 0.785398... |