Code covered by the BSD License  

Highlights from
Genetic Algorithm Solution to Economic Dispatch

  • eldga.mThis program solves the economic dispatch with Bmn coefficients by
  • eldga1.m
  • gatest.mThis program solves the economic dispatch with Bmn coefficients byGenetic
  • gatest1.mThis program solves the economic dispatch with Bmn coefficients by
  • View all files

Genetic Algorithm Solution to Economic Dispatch

by

 

23 Jul 2008 (Updated )

This program solves the economic dispatch problam using MATLAB genetic algorithm toolbox

gatest.m
clear;
clc;
tic;
global data B Pd
% This program solves the economic dispatch with Bmn coefficients byGenetic
% Algorithm toolbox of MATLAB 7.04.For any discussion&Clarification  the
% author  can be  contacted by mail (salorajan@gmail.com)
% The data matrix should have 5 columns of fuel cost coefficients and plant  limits.
% 1.a ($/MW^2) 2. b $/MW 3. c ($) 4.lower lomit(MW) 5.Upper limit(MW)
%no of rows denote the no of plants(n)
 data=[0.007	7	240	100	500
0.0095	10	200	50	200
0.009	8.5	220	80	300
0.009	11	200	50	150
0.008	10.5	220	50	200
0.0075	12	120	50	120];
% Loss coefficients it should be squarematrix of size nXn where n is the no
% of plants
B=1e-4*[0.14	0.17	0.15	0.19	0.26	0.22
0.17	0.6	0.13	0.16	0.15	0.2
0.15	0.13	0.65	0.17	0.24	0.19
0.19	0.16	0.17	0.71	0.3	0.25
0.26	0.15	0.24	0.3	0.69	0.32
0.22	0.2	0.19	0.25	0.32	0.85
];
% Demand (MW)
Pd=700;
% setting the genetic algorithm parameters.
options = gaoptimset;
options = gaoptimset('PopulationSize', 50,'Generations', 500,'TimeLimit', 200,'StallTimeLimit', 100,'PlotFcns',  {@gaplotbestf,@gaplotbestindiv});
  [x ff]=ga(@eldga,5,options);
 [ F P1 Pl]=eldga(x)
 tic;
 %   F is the total fuel cost
 %P1 is the allocation vector
% Pl is the transmission losss

Contact us