No BSD License  

Be the first to rate this file! 22 Downloads (last 30 days) File Size: 4.85 KB File ID: #21363

Step response invariant discretization of fractional order integrators/differentiators

by

 

07 Sep 2008 (Updated )

Compute a discrete-time finite dimensional (z) transfer function to approximate s^r, r = real number

| Watch this File

File Information
Description

% Step response invariant discretization of fractional order integrators
%
% srid_fod function is prepared to compute a discrete-time finite dimensional
% (z) transfer function to approximate a continuous-time fractional order
% integrator/differentiator function s^r, where "s" is the Laplace transform variable, and "r" is a
% real number in the range of (-1,1). s^r is called a fractional order
% differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0.
%
% The proposed approximation keeps the step response "invariant"
%
% IN:
% r: the fractional order
% Ts: the sampling period
% norder: the finite order of the approximate z-transfer function
% (the orders of denominator and numerator z-polynomial are the same)
% OUT:
% sr: returns the LTI object that approximates the s^r in the sense
% of step response.
% TEST CODE
% dfod=srid_fod(-.5,.01,5);figure;pzmap(dfod)
%
% Reference: YangQuan Chen. "Impulse-invariant and step-invariant
% discretization of fractional order integrators and differentiators".
% August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar.
% http://fractionalcalculus.googlepages.com/

Acknowledgements

Impulse Response Invariant Discretization Of Fractional Order Integrators/Differentiators inspired this file.

Required Products Control System Toolbox
Signal Processing Toolbox
MATLAB release MATLAB 7.4 (R2007a)
Tags for This File   Please login to tag files.
Please login to add a comment or rating.

Contact us