Code covered by the BSD License

### Highlights fromNumerical Methods Using MATLAB, 2e

zinv
```function [fun,dfun,ifun,x0,m,C,Ax] = zinv
%---------------------------------------------------------------------------
%ZINV   Taylor series coefficient lists for (1+x)^(-1).
%       Pm(x) = c(1) + c(2)x + c(2)x^2 + ... + c(m+1)x^m
% Inputs
%   There are no inputs for this function.
% Return
%   fun    name of the function f(x)
%   dfun   name of the derivative f'(x)
%   ifun   name of the integral  f(x)dx
%   x0     point of expansion
%   m      degree of the polynomial
%   C      coefficient list of the polynomial
%   Ax     three asis vectors plotting f, f' and f
%
% NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1995
% To accompany the text:
% NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISBN 0-13-624990-6
% Prentice Hall, International Editions:   ISBN 0-13-625047-5
% This free software is compliments of the author.
%
% Algorithm 4.1 (Evaluation of a Taylor Series).
% Section	4.1, Taylor Series and Calculation of Functions, Page 203
% Algorithm 4.2 (Polynomial Calculus).
% Section	4.2, Introduction to Interpolation, Page 212
% Algorithm 4.p (Pade rational Approximation).
% Section	4.6, Pade Approximations, Page 249
%---------------------------------------------------------------------------

x0 = 0;
m = 25;
a = -0.9;
b = 1;
ymin = 0;
ymax = 10;
ymin1 = -10;
ymax1 = 0;
ymin2 = -2.5;
ymax2 = 1;
Ax(1,:) = [a b ymin ymax];
Ax(2,:) = [a b ymin1 ymax1];
Ax(3,:) = [a b ymin2 ymax2];
fun = '(1+x).^(-1)';
dfun = '-(1 + x).^(-2)';
ifun = 'log(1 + x)';
C = [-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1,
-1,
1];
```