Code covered by the BSD License
- demo_vpi
- base2vpi(B,base)bin2vpi: converts an integer in an arbitrary base into vpi (decimal) form
- bin2vpi(B)bin2vpi: converts a binary representation of an integer into vpi (decimal) form
- binomfactors(n,k)binomfactors: list all factors of the binomial coefficient nchoosek(n,k)
- catdigits(N,M)catdigits: concatenates the digits of N and M into an aggregate number
- createPrimesListcreatePrimesList - For users of older matlab releases, this function will generate a compatible _primeslist_ file
- factorialfactors(n)factorialfactors: efficient computation of the prime factors of factorial(n)
- fibonacci(n,modulus)fibonacci: vpi tool to efficiently compute the n'th Fibonacci number and the n'th Lucas number
- getprimeslist
loads the primeslist file, and decompresses it, returning the list of primes up to 2^26
- ispalindrome(N)ispalindrome: test if the number N (vpi or numeric, or a digit string as a vector) is a palindrome
- iszero(INT)vpi/iszero: test to see if a numeric object is zero
- legendresymbol(a,p)legendresymbol: computes the legendre symbol (a/p) for prime p
- lineardiophantine(A,B,C)lineardiophantine: solve the linear Diophantine equation, A*x + B*y = C
- mersenne(p)mersenne: identify whether 2^p-1 is a Mersenne prime, using the Lucas-Lehmer test
- minv(a,p)
- modfibonacci(n,modulus)fibonacci: compute the n'th Fibonacci number and the n'th Lucas number, all modulo a given value
- modrank(A,p)modrank: compute the rank of an integer array, modulo p
- modroot(a,p)
- modsolve(A,rhs,p)
- nextprime(N,direction,kpr...nextprime: finds the next larger prime number directly above (or below) N
- numberOfPartitions(N)numberOfPartitions: compute the number of partitions of the positive integer n
- powermod(a,d,n)vpi/powermod: Compute mod(a^d,n)
- quadraticresidues(N)quadraticresidues: returns a list of the possible quadratic residues of the integer N
- quotient(numerator,denomi...quotient: divides two integers, computing a quotient and remainder
- subfactorial(N)subfactorial: The subfactorial of an integer (or integers) N, known as !N
- totient(N)vpi/totient: the number of positive integers less than N that are coprime to N
- vpi(N)vpi: Creator function for a variable precision integer
-
View all files
from
Variable Precision Integer Arithmetic
by John D'Errico
Arithmetic with integers of fully arbitrary size. Arrays and vectors of vpi numbers are supported.
|
| base2vpi(B,base) |
function INT = base2vpi(B,base)
% bin2vpi: converts an integer in an arbitrary base into vpi (decimal) form
% usage: INT = base2vpi(B,base)
%
% arguments: (input)
% B - Digits as a numeric vector in a base
% specified by base. The highest order
% digit comes first in this representation.
%
% The elements of B must be non-negative
% integers, strictly less than base.
%
% base - scalar, integer, positive numeric
% 2 <= base <= 2^26
%
% arguments: (output)
% INT - the vpi form of the integer represented by B
%
%
% Example:
% base2vpi(1:9,10)
% ans =
% 123456789
%
%
% See also: base2dec, dec2base, vpi2base, bin2vpi, vpi2bin
%
%
% Author: John D'Errico
% e-mail: woodchips@rochester.rr.com
% Release: 1.0
% Release date: 1/24/09
if (nargin~=2)
error('Two arguments are required')
end
% insure that B is a numeric vector
if isempty(B)
INT = vpi(0);
return
elseif ~isvector(B) || any(B<0) || any(B>=base) || any(B~=round(B))
error('B must contain numeric, nonegative integer elements < base')
end
% just use Horner's method for the conversion
INT = vpi(B(1));
vbase = vpi(base);
for i = 2:length(B)
INT = INT*vbase + B(i);
end
|
|
Contact us