Code covered by the BSD License  

Highlights from
0-1 Knapsack

from 0-1 Knapsack by Petter
Solves the 0-1 knapsack problem with positive integer weights.

knapsack(weights, values, W)
%KNAPSACK Solves the 0-1 knapsack problem for positive integer weights
%
%  [BEST AMOUNT] = KNAPSACK(WEIGHTS, VALUES, CONSTRAINT)
%       
%       WEIGHTS    : The weight of every item (1-by-N)
%       VALUES     : The value of every item (1-by-N)
%       CONSTRAINT : The weight constraint of the knapsack (scalar)
%
%       BEST       : Value of best possible knapsack (scalar)
%       AMOUNT     : 1-by-N vector specifying the amount to use of each item (0 or 1)
%
%
%	EXAMPLE :
%
%		weights = [1 1 1 1 2 2 3];
%		values  = [1 1 2 3 1 3 5];
%		[best amount] = KNAPSACK(weights, values, 7)
%
%		best =
%
%	    	13
%
%
%		amount =
%
%	    	 0     0     1     1     0     1     1
%
%
%   See <a href="http://en.wikipedia.org/wiki/Knapsack_problem">Knapsack problem</a> on Wikipedia.
%
%   Copyright 2009 Petter Strandmark
%   <a href="mailto:petter.strandmark@gmail.com">petter.strandmark@gmail.com</a>
function [best amount] = knapsack(weights, values, W)
    if ~all(is_positive_integer(weights)) || ...
       ~is_positive_integer(W)
        error('Weights must be positive integers');
    end
    %We work in one dimension
    [M N] = size(weights);
    weights = weights(:);
    values = values(:);
    if numel(weights) ~= numel(values)
        error('The size of weights must match the size of values');
    end
    if numel(W) > 1
        error('Only one constraint allowed');
    end  
    
    % Solve the problem
    
    % Note that A would ideally be indexed from A(0..N,0..W) but MATLAB 
    % does not allow this.
    A = zeros(length(weights)+1,W+1);
    % A(j+1,Y+1) means the value of the best knapsack with capacity Y using
    % the first j items.
    for j = 1:length(weights)
        for Y = 1:W
            if weights(j) > Y
                A(j+1,Y+1) = A(j,Y+1);
            else
                A(j+1,Y+1) = ...
                    max( A(j,Y+1), values(j) + A(j,Y-weights(j)+1));
            end
        end
    end

   best = A(end,end);
   
   %Now backtrack 
   amount = zeros(length(weights),1);
   a = best;
   j = length(weights); 
   Y = W;
   while a > 0
       while A(j+1,Y+1) == a
           j = j - 1;
       end
       j = j + 1; %This item has to be in the knapsack
       amount(j) = 1;
       Y = Y - weights(j);
       j = j - 1;
       a = A(j+1,Y+1);
   end

    
    amount = reshape(amount,M,N);
end

function yn = is_positive_integer(X)
    yn = X>0 & floor(X)==X;
end

Contact us