Code covered by the BSD License

# geom3d

### David Legland (view profile)

19 Jun 2009 (Updated )

Library to handle 3D geometric primitives: create, intersect, display, and make basic computations

### Editor's Notes:

This file was selected as MATLAB Central Pick of the Week

isCoplanar(x,y,z,tolerance)
```function copl = isCoplanar(x,y,z,tolerance)
%ISCOPLANAR Tests input points for coplanarity in 3-space.
%
% COPL = isCoplanar(X,Y,Z,TOLERANCE) takes input arguments x,y, and z as column vectors;
%        TOLERANCE is optional.
% COPL = isCoplanar(x) takes an n x 3 input argument in the form [x1 y1 z1;x2 y2 z2;...;xn yn zn]
%
% The optional argument TOLERANCE allows for roundoff error; if each combination of four points is
% truly coplanar, the volume of the tetrahedron they define is zero. When computational round-off
% error is introduced, this volume can be close to, but not equal to zero. Setting the tolerance
% to a value greater than zero enables the algorithm to return a "correct" finding of coplanarity
% within the tolerance specified.
%
% EXAMPLES: iscoplanar([1 2 -2;-3 1 -14;-1 2 -6;1 -2 -8],eps)
%           copl = iscoplanar([1 -3 -1 1]',[2 1 2 -2]',[-2 -14 -6 -8]')

%
% Written by Brett Shoelson, Ph.D.
% brett.shoelson@joslin.harvard.edu
%
% Thanks to Roger Stafford, roger.ellie@mindspring.com for his dilligence
% in uncovering problems with my original code.
%
% Completed 6/10/01.
% Written and tested under MATLAB V6 (R12).
% Modified 2/10/04; now uses determinant discrimination, which is much
% faster (on the order of ten times) than previous way. Also, old version
% had a typo; should have (but didn't) compared ABSOLUTE VALUE of error
%
%   04/01/2007: clean up input processing (DL)

if nargin == 0
error('Requires at least one input argument.');
elseif nargin == 1
if size(x,2) == 3
% Matrix of all x,y,z is input
allpoints = x;
tolerance = 0;
else
error('Invalid input.')
end
elseif nargin == 2
if size(x,2) == 3
% Matrix of all x,y,z is input
allpoints = x;
tolerance = y;
else
error('Invalid input.')
end
elseif nargin == 3
% Compile a matrix of all x,y,z
allpoints = [x y z];
tolerance = 0;
else
allpoints = [x y z];
end

if length(x)<=3
%  disp('Three or fewer points are necessarily coplanar.');
copl=1;
return;
end

%Compare all 4-tuples of point combinations; {P1:P4} are coplanar iff
%det([x1 y1 z1 1;x2 y2 z2 1;x3 y3 z3 1;x4 y4 z4 1])==0
tmp = nchoosek(1:size(allpoints,1),4);
for ii = 1:size(tmp,1)
copl = abs(det([allpoints(tmp(ii, :), :) ones(4,1)])) <= tolerance;
if ~copl
break
end
end```