Code covered by the BSD License  

Highlights from
geom3d

image thumbnail

geom3d

by

 

19 Jun 2009 (Updated )

Library to handle 3D geometric primitives: create, intersect, display, and make basic computations

Editor's Notes:

This file was selected as MATLAB Central Pick of the Week

revolutionSurface.m
function varargout = revolutionSurface(varargin)
%REVOLUTIONSURFACE Create a surface of revolution from a planar curve
%
%   usage 
%   [X Y Z] = revolutionSurface(C1, C2, N);
%   create the surface of revolution of parametrized function (xt, yt),
%   with N+1 equally spaced slices, around the Oz axis.
%   It assumed that C1 corresponds to the x coordinate, and that C2
%   corresponds to the Oz coordinate.
%
%   [X Y Z] = revolutionSurface(CURVE, N);
%   is the same, but generating curve is given in a single parameter CURVE,
%   which is a [Nx2] array of 2D points.
%
%   [X Y Z] = revolutionSurface(..., THETA)
%   where THETA is a vector, uses values of THETA for computing revolution
%   angles.
%
%   [X Y Z] = revolutionSurface(..., LINE);
%   where LINE is a 1x4 array, specifes the revolution axis in the
%   coordinate system of the curve. LINE is a row vector of 4 parameters,
%   containing [x0 y0 dx dy], where (x0,y0) is the origin of the line and
%   (dx,dy) is a direction vector of the line.
%   The resulting revolution surface still has Oz axis as symmetry axis. It
%   can be transformed using transformPoint3d function.
%   Surface can be displayed using :
%   H = surf(X, Y, Z);
%   H is a handle to the created patch.
%
%   revolutionSurface(...);
%   by itself, directly shows the created patch.
%
%   Example
%   % draws a piece of torus
%   circle = circleAsPolygon([10 0 3], 50);
%   [x y z] = revolutionSurface(circle, linspace(0, 4*pi/3, 50));
%   surf(x, y, z);
%   axis equal;
%
%
%
%   See also
%       surf, transformPoint3d, drawSphere, drawTorus, drawEllipsoid
%       surfature (on Matlab File Exchange)
%
%
%   ------
%   Author: David Legland
%   e-mail: david.legland@grignon.inra.fr
%   Created: 2004-04-09
%   Copyright 2005 INRA - CEPIA Nantes - MIAJ Jouy-en-Josas.

%   based on function cylinder from matlab
%   31/06/2006 fix bug when passing 3 parameters
%   20/04/2007 rewrite processing of input parameters, add psb to specify
%       revolution axis
%   24/10/2008 fix angle vector
%   29/07/2010 doc update


%% Initialisations

% default values

% use revolution using the full unit circle, decomposed into 24 angular
% segments (thus, some vertices correspond to particular angles 30,
% 45...)
theta = linspace(0, 2*pi, 25);

% use planar vertical axis as default revolution axis
revol = [0 0 0 1];

% extract the generating curve
var = varargin{1};
if size(var, 2)==1
    xt = var;
    yt = varargin{2};
    varargin(1:2) = [];
else
    xt = var(:,1);
    yt = var(:,2);
    varargin(1) = [];
end

% extract optional parameters: angles, axis of revolution
% parameters are identified from their length
while ~isempty(varargin)
    var = varargin{1};
    
    if length(var) == 4
        % axis of rotation in the base plane
        revol = var;
        
    elseif length(var) == 1
        % number of points -> create row vector of angles
        theta = linspace(0, 2*pi, var);
        
    else
        % use all specified angle values
        theta = var(:)';
        
    end
    varargin(1) = [];
end


%% Create revolution surface

% ensure length is enough
m = length(xt);
if m==1
    xt = [xt xt];
end

% ensure x and y are vertical vectors
xt = xt(:);
yt = yt(:);

% transform xt and yt to replace in the reference of the revolution axis
tra = createTranslation(-revol(1:2));
rot = createRotation(pi/2 - lineAngle(revol));
[xt yt] = transformPoint(xt, yt, tra*rot);

% compute surface vertices
x = xt * cos(theta);
y = xt * sin(theta);
z = yt * ones(size(theta));


%% Process output arguments

% format output depending on how many output parameters are required
if nargout == 0
    % draw the revolution surface
    surf(x, y, z);
    
elseif nargout == 1
    % draw the surface and return a handle to the shown structure
    h = surf(x, y, z);
    varargout{1} = h;
    
elseif nargout == 3
    % return computed mesh
    varargout = {x, y, z};
end


Contact us