Code covered by the BSD License

# Kalman Filter in Matlab (Tutorial)

### Rao Farhat Masood (view profile)

20 Jun 2009 (Updated )

Learn how to Implement Kalman Filter in Matlab.

(A*s1*C'+V12)/(V2+C*s1*C'); dd=max(max(abs(k1-k0))); it=it+1; s0=s1; end; k=k1;s=s0; if it>=maxit; disp('WARNING: Iteration limit of 1000 reached in KFILTER.M'); end;end;
```% Computes gain using the covariance matrix.
% Copyrights Farhat Masood (NUST) Pakistan

function [k,s] = kfilter(A,C,V1,V2,V12)%function [k,s] = kfilter(A,C,V1,V2,V12)%KFILTER can have arguments: (A,C,V1,V2) if there are no cross% products, V12=0.%     KFILTER calculates the kalman gain, k, and the stationary%     covariance matrix, s, using the Kalman filter for:%  %		x[t+1] = Ax[t] + Bu[t] + w1[t+1]%               y[t] = Cx[t] + Du[t] + w2[t]%%               E [w1(t+1)] [w1(t+1)]' =  [V1   V12;%                 [ w2(t) ] [ w2(t) ]      V12' V2 ]%%  where x is the mx1 vector of states, u is the nx1 vector of controls, y is%  the px1 vector of observables, A is mxm, B is mxn, C is pxm, V1 is mxm,%  V2 is pxp, V12 is mxp.%m=max(size(A));[rc,cc]=size(C);if nargin==4; V12=zeros(m,rc); end;if (rank(V2)==rc);  A=A-(V12/V2)*C;  V1=V1-V12*(V2\V12');  [k,s]=doubleo(A,C,V1,V2);  k=k+(V12/V2);else;  s0=.01*eye(m);  dd=1;  it=1;  maxit=1000;  while (dd>1e-8 & it<=maxit);    k0= (A*s0*C'+V12)/(V2+C*s0*C');    s1= A*s0*A' + V1 -(A*s0*C'+V12)*k0';    k1= (A*s1*C'+V12)/(V2+C*s1*C');    dd=max(max(abs(k1-k0)));    it=it+1;    s0=s1;  end;  k=k1;s=s0;  if it>=maxit;     disp('WARNING: Iteration limit of 1000 reached in KFILTER.M');   end;end;```