File Exchange

image thumbnail

Simple cells (visual cortex)

version 1.1 (7.81 MB) by

One-dimensional stand-alone implementation of a model of a cortical simple cell

2 Downloads

Updated

View License

This software has been realized by Ben Chandler at the CNS Technology Lab at Boston University (http://techlab.bu.edu/). The main author of the software is Ben Chandler ( http://www.neurdon.com/about-2/editors/ben-chandler/ )

This is a one-dimensional stand-alone implementation of the Grossberg and Todorović model of a cortical simple cell.

Reference
Grossberg, S. , Todorovic, D., Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena, Perception and Psychophysics, 43, 241-277 (1988).

Computer simulations of a neural network model of I-D and 2-D brightness phenomena are presented. The simulations indicate how configural image properties trigger interactions among spatially organized contrastive, boundary segmentation, and filling-in processes to generate emergent percepts. They provide the first unified mechanistic explanation of this set of phenomena, a number of which have received no previous mechanistic explanation. Network interactions between a Boundary Contour (BC) System and a Feature Contour (FC) System comprise the model. The BC System consists of a hierarchy of contrast-sensitive and orientationally tuned interactions, leading to a boundary segmentation. On and off geniculate cells and simple and complex cortical cells are modeled. Output signals from the BC System segmentation generate compartmental boundaries within the FC System. Contrast-sensitive inputs to the FC System generate a lateral filling-in of activation within FC System compartments. The filling-in process is defined by a nonlinear diffusion mechanism. Simulated phenomena include network responses to stimulus distributions that involve combinations of luminance steps, gradients, cusps, and corners of various sizes. These images include impossible staircases, bull's-eyes, nested combinations of luminance profiles, and images viewed under nonuniform illumination conditions. Simulated phenomena include variants of brightness constancy, brightness contrast, brightness assimilation, the Craik-O'Brien-Cornsweet effect, the Kofika-Benussi ring, the Kanizsa-Minguzzi anomalous brightness differentiation, the Hermann grid, and a Land Mondrian viewed under constant and gradient illumination that cannot be explained by retinex theory.
Code Description

This Matlab implementation includes stand-alone source code, simplecell.m, as well as documentation and a GUI-based example. For stand-alone use instructions, see how_to_run.pdf. Otherwise, run main_gui from Matlab to see the full GUI example.

Comments and Ratings (0)

Updates

1.1

updated authorship/credits

MATLAB Release
MATLAB 7.5 (R2007b)

Download apps, toolboxes, and other File Exchange content using Add-On Explorer in MATLAB.

» Watch video