CHAPTER 1: FOURIER ANALYSIS
1.1 CONTINUOUS-TIME FOURIER SERIES (CTFS)
1.2 PROPERTIES OF CTFS
1.2.1 Time-Shifting Property
1.2.2 Frequency-Shifting Property
1.2.3 Modulation Property
1.3 CONTINUOUS-TIME FOURIER TRANSFORM (CTFT)
1.4 PROPERTIES OF CTFT
1.4.1 Linearity
1.4.2 Conjugate Symmetry
1.4.3 Real Translation and Complex Translation
1.4.4 Real Convolution and Correlation
1.4.5 Complex Convolution – Modulation/Windowing
1.4.6 Duality
1.4.7 Parseval Relation - Power Theorem
1.5 DISCRETE-TIME FOURIER TRANSFORM (DTFT)
1.6 DISCRETE-TIME FOURIER SERIES - DFS/DFT
1.7 SAMPLING THEOREM
1.7.1 Relationship between CTFS and DFS
1.7.2 Relationship between CTFT and DTFT
1.7.3 Sampling Theorem
1.8 POWER, ENERGY, AND CORRELATION
1.9 LOWPASS EQUIVALENT OF BANDPASS SIGNALS
CHAPTER 2: PROBABILITY AND RANDOM PROCESSES
2.1 PROBABILITY
2.2 LINEAR FILTERING AND PSD OF A RANDOM PROCESS
2.3 FADING EFFECT OF A MULTI-PATH CHANNEL
CHAPTER 3: ANALOG MODULATION
3.1 AMPLITUDE MODULATION (AM)
3.1.1 DSB (Double Sideband)-AM (Amplitude Modulation)
3.1.2 Conventional AM (Amplitude Modulation)
3.1.3 SSB (Single Sideband)-AM(Amplitude Modulation)
3.2 ANGLE MODULATION - FREQUENCY/PHASE MODULATIONS
CHAPTER 4: ANALOG-TO-DIGITAL CONVERSION
4.1 QUANTIZATION
4.1.1 Uniform Quantization
4.1.2 Non-uniform Quantization
4.1.3 Non-uniform Quantization Considering Relative Errors
4.2 Pulse Code Modulation (PCM)
4.3 Differential Pulse Code Modulation (DPCM)
4.4 Delta Modulation (DM)
CHAPTER 5: BASEBAND DIGITAL TRANSMISSION
5.1 RECEIVER (RCVR) and SNR
5.1.1 Receiver of Filter Type
5.1.2 Receiver of Matched Filter Type
5.1.3 Signal Correlator
5.2 SIGNALING AND ERROR PROBABILITY
5.2.1 Antipodal (Bipolar) Signaling
5.2.2 OOK(On-Off Keying)/Unipolar Signaling
5.2.3 Orthogonal Signaling
5.2.4 Signal Constellation Diagram
5.2.5 Simulation of Binary Communication
5.2.6 Multi-level(amplitude) PAM Signaling
5.2.7 Multi-dimensional Signaling
5.2.8 Bi-orthogonal Signaling
CHAPTER 6: BANDLIMITED CHANNEL AND EQUALIZER
6.1 BANDLIMITED CHANNEL
6.1.1 Nyquist Bandwidth
6.1.2 Raised-Cosine Frequency Response
6.1.3 Partial Respone Signaling - Duobinary Signaling
6.2 EQUALIZER
6.2.1 Zero-Forcing Equalizer (ZFE)
6.2.2 MMSE Equalizer (MMSEE)
6.2.3 Adaptive Equalizer (ADE)
6.2.4 Decision Feedback Equalizer (DFE)
CHAPTER 7: PASSBAND DIGITAL TRANSMISSION
7.1 AMPLITUDE MODULATION - AMPLITUDE SHIFT KEYING (ASK)
7.2 FREQUENCY MODULATION - FREQUENCY SHIFT KEYING (FSK)
7.3 PHASE MODULATION - PHASE SHIFT KEYING (PSK)
7.4 DIFFERENTIAL PHASE SHFT KEYING (DPSK)
7.5 QUADRATURE AMPLITUDE MODULATION (QAM) - PAM/PSK
7.6 COMPARISON OF VARIOUS SIGNALINGS
CHAPTER 8: CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION
8.1 INTRODUCTION
8.2 PLL (PHASE-LOCKED LOOP)
8.3 ESTIMATION OF CARRIER PHASE USING PLL
8.4 CARRIER PHASE RECOVERY
8.4.1 Carrier Phase Recovery Using Squaring Loop for BPSK
8.4.2 Carrier Phase Recovery Using Costas Loop for PSK
8.4.3 Carrier Phase Recovery for QAM Signals
8.5 SYMBOL SYNCHRONIZATION (TIMING RECOVERY)
8.5.1 Early-Late Gate Timing Recovery for BPSK Signals
8.5.2 NDA-ELD Synchronizer for PSK Signals
CHAPTER 9: INFORMATION AND CODIN
9.1 MEASURE OF INFORMATION - ENTROPY
9.2 SOURCE CODING
9.2.1 Huffman Coding
9.2.2 Lempel-Zip-Welch Coding
9.2.3 Source Coding vs. Channel Coding
9.3 CHANNEL MODEL AND CHANNEL CAPACITY
9.4 CHANNEL CODING
9.4.1 Waveform Coding
9.4.2 Linear Block Coding
9.4.3 Cyclic Coding
9.4.4 Convolutional Coding and Viterbi Decoding
9.4.5 Trellis-Coded Modulation (TCM)
9.4.6 Turbo Coding
9.4.7 Low-Density Parity-Check (LDPC) Coding
9.4.8 Differential Space-Time Block Coding (DSTBC)
9.5 CODING GAIN
CHAPTER 10: SPREAD-SPECTRUM SYSTEM
10.1 PN (Pseudo Noise) Sequence
10.2 DS-SS (Direct Sequence Spread Spectrum)
10.3 FH-SS (Frequency Hopping Spread Spectrum)
CHAPTER 11: OFDM SYSTEM
11.1 OVERVIEW OF OFDM
11.2 FREQUENCY BAND AND BANDWIDTH EFFICIENCY OF OFDM
11.3 CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION
11.4 CHANNEL ESTIMATION AND EQUALIZATION
11.5 INTERLEAVING AND DEINTERLEAVING
11.6 PUNCTURING AND DEPUNCTURING
11.7 IEEE STANDARD 802.11A - 1999 |