Code covered by the BSD License
-
[V,mean_discrepancy]=mdp_eval...
mdp_eval_policy_TD_0 Evaluation of the value function, using the TD(0) algorithm
-
mdp_LP(P, R, discount)
mdp_LP Resolution of discounted MDP with linear programming
-
mdp_Q_learning(P, R, discount...
mdp_Q_learning Evaluation of the matrix Q, using the Q learning algorithm
-
mdp_bellman_operator(P, PR, d...
mdp_bellman_operator Applies the Bellman operator on the value function Vprev
-
mdp_check(P , R)
mdp_check Check if the matrices P and R define a Markov Decision Process
-
mdp_check_square_stochastic( ...
mdp_check_square_stochastic Check if Z is a square stochastic matrix
-
mdp_computePR(P,R)
mdp_computePR Computes the reward for the system in one state
-
mdp_computePpolicyPRpolicy(P,...
mdp_computePpolicyPRpolicy Computes the transition matrix and the reward matrix for a policy
-
mdp_eval_policy_iterative(P, ...
mdp_eval_policy_iterative Policy evaluation using iteration.
-
mdp_eval_policy_matrix(P, R, ...
mdp_eval_policy_matrix Evaluation of the value function of a policy
-
mdp_eval_policy_optimality(P,...
mdp_eval_policy_optimality Eval if near optimum actions exists for each state
-
mdp_example_forest (S, r1, r2...
mdp_example_forest Generate a Markov Decision Process example based on
-
mdp_example_rand (S, A, is_sp...
mdp_example_rand Generate a random Markov Decision Process
-
mdp_finite_horizon(P, R, disc...
mdp_finite_horizon Reolution of finite-horizon MDP with backwards induction
-
mdp_policy_iteration(P, R, di...
mdp_policy_iteration Resolution of discounted MDP
-
mdp_policy_iteration_modified...
mdp_policy_iteration_modified Resolution of discounted MDP
-
mdp_relative_value_iteration(...
mdp_relative_value_iteration Resolution of MDP with average reward
-
mdp_silent()
mdp_silent Ask for running resolution functions of the MDP Toolbox
-
mdp_span(W)
mdp_span Returns the span of W
-
mdp_value_iteration(P, R, dis...
mdp_value_iteration Resolution of discounted MDP with value iteration algorithm
-
mdp_value_iterationGS(P, R, d...
mdp_value_iterationGS Resolution of discounted MDP with value iteration Gauss-Seidel algorithm
-
mdp_value_iteration_bound_ite...
mdp_value_iteration_bound_iter Computes a bound for the number of iterations
-
mdp_verbose()
mdp_verbose Ask for running resolution functions of the MDP Toolbox
-
View all files
Markov Decision Processes (MDP) Toolbox
by Marie-Josee Cros
09 Nov 2009
(Updated 31 Oct 2012)
Functions related to the resolution of discrete-time Markov Decision Processes.
|
Watch this File
|
| File Information |
| Description |
The MDP toolbox proposes functions related to the resolution of discrete-time Markov Decision Processes: backwards induction, value iteration, policy iteration, linear programming algorithms with some variants.
The functions were developped with MATLAB (note that one of the functions requires the Mathworks Optimization Toolbox) by Iadine Chadès, Marie-Josée Cros, Frédérick Garcia, Régis Sabbadin of the Biometry and Artificial Intelligence Unit of INRA Toulouse (France).
The version 3.0 (September 2009) adds several functions related to Reinforcement Learning and improves the handling of sparse matrices. For more detail see the README file.
Toolbox page: http://www.inra.fr/mia/T/MDPtoolbox
|
| MATLAB release |
MATLAB 7.9 (R2009b)
|
|
Tags for This File
|
| Everyone's Tags |
|
| Tags I've Applied |
|
| Add New Tags |
Please login to tag files.
|
| Updates |
| 09 Nov 2009 |
Add all authors names |
| 31 Oct 2012 |
The version 4.0 (October 2012) is entirely compatible with GNU Octave (version 3.6), the output of several functions: mdp_relative_value_iteration, mdp_value_iteration and mdp_eval_policy_iterative, were modified.
|
| 31 Oct 2012 |
Update the zip file ! |
|
Contact us