Code covered by the BSD License  

Highlights from
Absolute Orientation - Horn's method

Absolute Orientation - Horn's method

by

 

23 Dec 2009 (Updated )

Solves weighted absolute orientation problem using Horn's quaternion-based method.

[Bfit,report]=absorient(A,B,doScale)
function [Bfit,report]=absorient(A,B,doScale)
% This tool solves the absolute orientation problem, i.e., it finds the 
% rotation, translation, and optionally also the scaling, that best maps one
% collection of 2D point coordinates to another in a least squares sense. 
% Namely,
%  
%            [Bfit,report]=absorient(A,B,doScale)
%  
% solves, when doScale=false (the default),
%  
%                min. sum_i ||R*A(:,i) + t - B(:,i)||^2
%  
% where R is a 2D rotation matrix and t is translation vector.
%  
%
%When doScale=true, it solves the more general problem
% 
%                min. sum_i ||s*R*A(:,i) + t - B(:,i)||^2
% 
%where s is a global scale factor.
%
%
%in:
%
%  A: a 2xN matrix whos columns are the 2D coords of N source points.
%  B: a 2xN matrix whos columns are the 2D coords of N target points.
%  doScale: Boolean flag. If true (default=false), the registration will 
%          include a scale factor.
%          
%out:
%
% Bfit: The rotation, translation, and scaling (as applicable) of A that 
%       best matches B in least squares sense.
%
% report: structure output with various registration quantitites,
%
%     report.R:   The best rotation
%     report.q:   A unit quaternion [q0 qz] corresponding to R and
%                 signed so that R is a clock-wise rotation about the
%                 3rd axis.
%     report.t:   The best translation
%     report.s:   The best scale factor (set to 1 if doScale=false).
%     report.M:   Homogenous coord transform [s*R,t;[0 0 1]] matrix.
% 
%
% and, finally, with err(i)=norm( Bfit(:,i)-B(:,i) ),
%
%      report.errlsq = 0.5* norm(err) 
%      report.errmax = max(err) 
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Author: Matt Jacobson
% Copyright, Xoran Technologies, Inc.  http://www.xorantech.com



ncols=@(M) size(M,2); %number of columns
%matmvec=@(M,v) bsxfun(@minus,M,v); %matrix-minus-vector


nn=ncols(A);

if nargin<3, doScale=false; end

if nn~=ncols(B),
    error 'The number of points to be registered must be the same'
end



lc=mean(A,2);  rc=mean(B,2);  %Centroids

left  = matmvec(A,lc); %Center coordinates at centroids
right = matmvec(B,rc); 

M=left*right.';

Nxx=M(1)+M(4); Nyx=M(3)-M(2);

N=[Nxx   Nyx;...
   Nyx   -Nxx];

[V,D]=eig(N);

[trash,emax]=max(real(  diag(D)  )); emax=emax(1);

q=V(:,emax); %Gets eigenvector corresponding to maximum eigenvalue
q=real(q);   %Get rid of imaginary part caused by numerical error


q=q*sign(q(2)+(q(2)>=0)); %Sign ambiguity
q=q./norm(q);

R11=q(1)^2-q(2)^2;
R21=prod(q)*2;

R=[R11 -R21;R21 R11]; %map to orthogonal matrix


if doScale
   
     summ = @(M) sum(M(:));
  
     sss=summ( right.*(R*left))/summ(left.*left);
     t=rc-R*(lc*sss);
     Bfit=matmvec((sss*R)*A,-t);
     
else
    
    sss=1;
    t=rc-R*lc;
    Bfit=matmvec(R*A,-t);
 
end


if nargout>1
    
    l2norm = @(M,dim) sqrt(sum(M.^2,dim));
 
    report.q=q/norm(q);
    report.R=R;
    report.t=t;
    report.s=sss;
    report.M=[sss*R,t;[0 0 1]];
    
    err=l2norm(Bfit-B,1);
    report.errlsq=0.5*norm(err);
    report.errmax=max(err);
    
   
end
 

function M=matmvec(M,v)
%Matrix-minus-vector

 M(1,:)=M(1,:)-v(1);
 M(2,:)=M(2,:)-v(2);

Contact us