from
Animated Double Pendulum
by Alexander Erlich
Show animation of the double pendulum's (mostly) chaotic behavior.
|
| double_pendulum_ODE(t,x) |
function xdot = double_pendulum_ODE(t,x)
% DOUBLE_PENDULUM_ODE Ordinary differential equations for double pendulum.
%
% author: Alexander Erlich (alexander.erlich@gmail.com)
%
% parameters:
%
% t Column vector of time points
% xdot Solution array. Each row in xdot corresponds to the solution at a
% time returned in the corresponding row of t.
%
% This function calls is called by double_pendulum.
%
% ---------------------------------------------------------------------
g=x(5); m1=x(6); m2=x(7); l1=x(8); l2=x(9);
xdot=zeros(9,1);
xdot(1)=x(2);
xdot(2)=-((g*(2*m1+m2)*sin(x(1))+m2*(g*sin(x(1)-2*x(3))+2*(l2*x(4)^2+...
l1*x(2)^2*cos(x(1)-x(3)))*sin(x(1)-x(3))))/...
(2*l1*(m1+m2-m2*cos(x(1)-x(3))^2)));
xdot(3)=x(4);
xdot(4)=(((m1+m2)*(l1*x(2)^2+g*cos(x(1)))+l2*m2*x(4)^2*cos(x(1)-x(3)))*...
sin(x(1)-x(3)))/(l2*(m1+m2-m2*cos(x(1)-x(3))^2));
|
|
Contact us