Executes the Benjamini & Hochberg (1995) procedure for controlling the false discovery rate (FDR) of a family of hypothesis tests. FDR is the expected proportion of rejected hypotheses that are mistakenly rejected (i.e., the null hypothesis is actually true for those tests). FDR is generally a somewhat less conservative/more powerful method for correcting for multiple comparisons than procedures like Bonferroni correction that provide strong control of the family-wise error rate (i.e., the probability that one or more null hypotheses are mistakenly rejected).
This function implements both versions of the Benjamini & Hochberg procedure: the one that assumes independent or positively dependent tests and the one that makes no assumptions about test dependency. The latter procedure (published by Benjamini & Yekutieli in 2001) is always appropriate but is much more conservative than the former. Both procedures are quite simple and require only the p-values of all tests in the family
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 57(1), 289-300.
Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics. 29(4), 1165-1188.
For a review on false discovery rate control and other contemporary techniques for correcting for multiple comparisons see:
Groppe, D.M., Urbach, T.P., & Kutas, M. (2011) Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review.
Psychophysiology, 48(12) pp. 1711-1725, DOI: 10.1111/j.1469-8986.2011.01273.x http://www.cogsci.ucsd.edu/~dgroppe/PUBLICATIONS/mass_uni_preprint1.pdf |