Code covered by the BSD License  

Highlights from
Fundamental Matrix Computation

image thumbnail

Fundamental Matrix Computation

by

 

This package, implements the 3 standard algorithms for the computation of the fundamental matrix.

triangulate(x1,x2,P2,homogeneous)
%% function Xhat = triangulate(x1,x2,P2,homogeneous)
% triangulates the points Xhat, x1,x2 using P1(assumed to be [I|0]),P2
% Assumes the points x1,x2 are normalized so their last dimension is 1
% Xhat is the homogeneous coordinates of the reconstructed X
function Xhat = triangulate(x1,x2,P2,homogeneous)
Xhat = ones(4,size(x1,2));
P1 = [eye(3) zeros(3,1)];
for i = 1 : size(x1,2)
    if homogeneous
        A =[x1(1,i)*P1(3,:) - P1(1,:);
            x1(2,i)*P1(3,:) - P1(2,:);
            x2(1,i)*P2(3,:) - P2(1,:);
            x2(2,i)*P2(3,:) - P2(2,:)];    
        [u,s,v] = svd(A);
        Xhat(:,i) = v(:,end);
    else
        A =[x1(1,i)*P1(3,1:3) - P1(1,1:3);
            x1(2,i)*P1(3,1:3) - P1(2,1:3);
            x2(1,i)*P2(3,1:3) - P2(1,1:3);
            x2(2,i)*P2(3,1:3) - P2(2,1:3)];
        b = -[x1(1,i)*P1(3,4) - P1(1,4);
            x1(2,i)*P1(3,4) - P1(2,4);
            x2(1,i)*P2(3,4) - P2(1,4);
            x2(2,i)*P2(3,4) - P2(2,4)];    
        [u,s,v] = svd(A);
        bprime = u'*b;
        y = bprime(1:3) ./ (diag(s));
        Xhat(1:3,i) = v*y;
    end
end
Xhat = Xhat./repmat(Xhat(4,:),4,1);
end

Contact us