File Exchange

image thumbnail

Routh-Hurwitz Stability Criterion with GUI MATLAB V3.3

version 1.0 (41.1 KB) by

This GUI Solve Routh-Hurwitz Stability Criterion



View License


1-Calculate Exactly & Display Table Of Routh Hurwitz In Listbox
Similar Project Can't Solve Accurate Routh-Hurwitz Stability Criterion
For Example This Equation [1 1 3 3 3 2 1] Have All Element And First
Element Zero Simultaneity And I Test Any Project And None Solve It

2-Determine Where First Element Or All Element Is Zero Graphically(Change Own Row Color Voluntary)
Similar Project Show This With Text And Confuse Us

3-Factor s=0 Roots
Similar Project Don't Have This Feature . This Gui Factor s=0 Roots
And Solve Routh-Hurwitz Stability Criterion

4-Display Number Of Roots
This Gui Show Number Of
4-1-Repeated Roots On jw Axis
4-2-Left Half Plane Roots
4-3-Roots On jw Axis
4-4-Right Half Plane Roots
4-5-Number Of Center Roots(s=0) That Factor From Input Equation
4-6-Number Of Repeated Center Roots(s=0) That Factor From Input Equation

5-Display Result
5-1-Unstable System
5-2-Boundary Stable System
5-3-Stable System
Note: s=0 Roots That Factor In Input Equation Affect On Result

6-Find Upper & Lower Limit Of Variable k(Gain) With Gain Finder Tools
Input Equation(Poly Only) With k Variable(For Example: [1 0 5 0 k])
And Set Start & To & Interval Value

This Show Stable & Boundary Stable & Unstable Of Each k Value
Default Colors Is:
Boundary Stable:Green
You Can Change Color Voluntary

7-Save Table Of Routh-Hurwitz
You Can Save Table Of Routh-Hurwitz In .mat Format For Future Usage

8-Color Scheme(Beautiful)
You Can Change Color Scheme Of This GUI

9-Solve Equation
You Can Obtain Roots Of Input Equation With This
Note: s=0 Roots That Factor In Input Equation Appear Here

10-Step & Impulse Response
You Can Plot Step & Impulse Response By Determine Numerator
And Denominator Of Transfer Function .
Default Numerator Is [1] And Default Denominator Is Poly
State Of Input Equation
Note: If Number Of Zeros Greater Than Poles Then Gui Give Error Message

11- Z_plane Diagram
You Can See Z_plane(Place Of Zeros & Poles) In The Figure

12-Root Locus & Nyquist & Bode Diagram & Singular Value & Nichols
You Can See Above Diagram By Determine Numerator & Denominator
Of Transfer Function Be Similar To Section 9

13-Plot With LTI Viewer Of MATLAB

14-Support 2 Language
English & Farsi

This Gui Have 4 Example For Help You

16-Internal Help
This Gui Have Internal Help In Html Format

17-User Friendly
Everywhere You Have Mistake Gui Help You With Messages

Comments and Ratings (12)

Hoàng Quý


buenas porfavor me podrian ayudar a resolver esta practica gracias
Modelar matemáticamente sistemas analógicos SLTI.
Sistemas lineales e invariantes en el tiempo - SLTI:
Modelado de sistemas mediante ecuaciones diferenciales.
Respuesta de entrada cero.
Respuesta de estado cero.
Estabilidad IIBO y BIBO.
Representa matemáticamente un sistema en el dominio del tiempo mediante EDO.
Representa matemáticamente un sistema en el dominio de la frecuencia mediante transformada de Laplace.
Halla la respuesta de un sistema ante cualquier excitación.
Determina la estabilidad IIBO y BIBO de un sistema a través de la ubicación de los polos.

• Equipo de cómputo:
 Matlab, TheMathworks Inc.

Un sistema lineal invariante en el tiempo (SLTI – linear and time invariant) se puede modelar mediante la ecuación diferencial: Σ

Sean Lee

Not working, only the first demo works

CAn i call this function inside a for loop


the gain finder is not working for me... or either i'm using it wrong

badria alz

hello I'm getting

Error while evaluating UIControl Callback

please advise

Marc Claes

the gain finder is not working for me... or either i'm using it wrong.

Mario Suarez

excellent work !!!!!

lanh tran

good job

Np4e odhah

sorry ,the code is working good

Np4e odhah

thank u the same bug of this program is found here , try [1 4 3 12

MATLAB Release
MATLAB 7.10 (R2010a)

Download apps, toolboxes, and other File Exchange content using Add-On Explorer in MATLAB.

» Watch video