File Exchange

Routh-Hurwitz Stability Criterion with GUI MATLAB V3.3

version 1.0 (41.1 KB) by

This GUI Solve Routh-Hurwitz Stability Criterion

Updated

Features:

1-Calculate Exactly & Display Table Of Routh Hurwitz In Listbox
Similar Project Can't Solve Accurate Routh-Hurwitz Stability Criterion
For Example This Equation [1 1 3 3 3 2 1] Have All Element And First
Element Zero Simultaneity And I Test Any Project And None Solve It

2-Determine Where First Element Or All Element Is Zero Graphically(Change Own Row Color Voluntary)
Similar Project Show This With Text And Confuse Us

3-Factor s=0 Roots
Similar Project Don't Have This Feature . This Gui Factor s=0 Roots
And Solve Routh-Hurwitz Stability Criterion

4-Display Number Of Roots
This Gui Show Number Of
4-1-Repeated Roots On jw Axis
4-2-Left Half Plane Roots
4-3-Roots On jw Axis
4-4-Right Half Plane Roots
4-5-Number Of Center Roots(s=0) That Factor From Input Equation
4-6-Number Of Repeated Center Roots(s=0) That Factor From Input Equation

5-Display Result
5-1-Unstable System
5-2-Boundary Stable System
5-3-Stable System
Note: s=0 Roots That Factor In Input Equation Affect On Result

6-Find Upper & Lower Limit Of Variable k(Gain) With Gain Finder Tools
Input Equation(Poly Only) With k Variable(For Example: [1 0 5 0 k])
And Set Start & To & Interval Value

This Show Stable & Boundary Stable & Unstable Of Each k Value
Default Colors Is:
Stable:Blue
Boundary Stable:Green
Unstable:Red
You Can Change Color Voluntary

7-Save Table Of Routh-Hurwitz
You Can Save Table Of Routh-Hurwitz In .mat Format For Future Usage

8-Color Scheme(Beautiful)
You Can Change Color Scheme Of This GUI

9-Solve Equation
You Can Obtain Roots Of Input Equation With This
Note: s=0 Roots That Factor In Input Equation Appear Here

10-Step & Impulse Response
You Can Plot Step & Impulse Response By Determine Numerator
And Denominator Of Transfer Function .
Default Numerator Is [1] And Default Denominator Is Poly
State Of Input Equation
Note: If Number Of Zeros Greater Than Poles Then Gui Give Error Message

11- Z_plane Diagram
You Can See Z_plane(Place Of Zeros & Poles) In The Figure

12-Root Locus & Nyquist & Bode Diagram & Singular Value & Nichols
You Can See Above Diagram By Determine Numerator & Denominator
Of Transfer Function Be Similar To Section 9

13-Plot With LTI Viewer Of MATLAB

14-Support 2 Language
English & Farsi

15-Examples

16-Internal Help
This Gui Have Internal Help In Html Format

17-User Friendly

Hoàng Quý

hernanes

hernanes (view profile)

buenas porfavor me podrian ayudar a resolver esta practica gracias
2 IDENTIFICACIÓN COMPETENCIAS CONTENIDO TEMÁTICO INDICADOR DE LOGRO
Modelar matemáticamente sistemas analógicos SLTI.
Sistemas lineales e invariantes en el tiempo - SLTI:
Modelado de sistemas mediante ecuaciones diferenciales.
Representa matemáticamente un sistema en el dominio del tiempo mediante EDO.
Representa matemáticamente un sistema en el dominio de la frecuencia mediante transformada de Laplace.
Halla la respuesta de un sistema ante cualquier excitación.
Determina la estabilidad IIBO y BIBO de un sistema a través de la ubicación de los polos.

3 RECURSOS REQUERIDOS
• Equipo de cómputo:
 Matlab, TheMathworks Inc.

4 PROCEDIMIENTO
Un sistema lineal invariante en el tiempo (SLTI – linear and time invariant) se puede modelar mediante la ecuación diferencial: Σ

Fabrizio Iosa

Sean Lee

Sean Lee (view profile)

Not working, only the first demo works

Sudharsana Iyengar

Sudharsana Iyengar (view profile)

CAn i call this function inside a for loop

a_mageed

a_mageed (view profile)

the gain finder is not working for me... or either i'm using it wrong

hello I'm getting

Error while evaluating UIControl Callback

Marc Claes

Marc Claes (view profile)

the gain finder is not working for me... or either i'm using it wrong.

Mario Suarez

Mario Suarez (view profile)

excellent work !!!!!

lanh tran

good job

Np4e odhah

Np4e odhah (view profile)

sorry ,the code is working good

Np4e odhah

Np4e odhah (view profile)

thank u the same bug of this program is found here , try [1 4 3 12
]
http://www.mathworks.com/matlabcentral/fileexchange/17483-routh-hurwitz-stability-criterion

MATLAB Release
MATLAB 7.10 (R2010a)